Skip to main content

Filtered Repetitive Control with Nonlinear Systems: An Adaptive-Control-Like Method

  • Chapter
  • First Online:
Filtered Repetitive Control with Nonlinear Systems
  • 295 Accesses

Abstract

An adaptive-control-like method is the leading repetitive control (RC, or repetitive controller, also RC) method for nonlinear systems. Before using this method, a tracking problem for nonlinear systems needs to be converted into a rejection problem for nonlinear error dynamics subject to periodic disturbance. This conversion reduces the difficulties of the original problem. Furthermore, the periodic disturbance is considered as an unknown parameter that needs to be learned. As discussed in Chap. 4, the stability is enhanced by introducing a low-pass filter in RC for linear systems, resulting in a filtered repetitive controller (FRC, or filtered repetitive control, which is also designated as FRC). Similarly, it is also necessary to introduce a filter into RC for nonlinear systems. However, the theory on FRC proposed in [1] is derived in the frequency domain and can be applied only with difficulty, if at all, to nonlinear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hara, S., Yamamoto, Y., Omata, T., & Nakano, M. (1988). Repetitive control system: a new type servo system for periodic exogenous signals. IEEE Transactions on Automatic Control, 33(7), 659–668.

    Article  MathSciNet  Google Scholar 

  2. Quan, Q., & Cai, K.-Y. (2011). A filtered repetitive controller for a class of nonlinear systems. IEEE Transaction on Automatic Control, 56(2), 399–405.

    Article  MathSciNet  Google Scholar 

  3. Quan, Q., & Cai, K.-Y. (2011). Filtered repetitive control of robot manipulators. International Journal of Innovative Computing, Information and Control, 7(5(A)), 2405–2415.

    Google Scholar 

  4. Quan, Q. (2017). Introduction to multicopter design and control. Singapore: Springer.

    Google Scholar 

  5. Quan, Q., & Cai, K.-Y. (2013). Internal-model-based control to reject an external signal generated by a class of infinite-dimensional systems. International Journal of Adaptive Control and Signal Processing, 27(5), 400–412.

    Article  MathSciNet  Google Scholar 

  6. Messner, W., Horowitz, R., Kao, W.-W., & Boals, M. (1991). A new adaptive learning rule. IEEE Transactions on Automatic Control, 36(2), 188–197.

    Article  MathSciNet  Google Scholar 

  7. Dixon, W. E., Zergeroglu, E., Dawson, D. M., & Costic, B. T. (2002). Repetitive learning control: a Lyapunov-based approach. IEEE Transaction on Systems, Man, and Cybernetics, Part B-Cybernetics, 32(4), 538–545.

    Article  Google Scholar 

  8. Francis, B. A., & Wonham, W. M. (1976). The internal model principle of control theory. Automatica, 12(5), 457–465.

    Article  MathSciNet  Google Scholar 

  9. Hale, J. K., & Lunel, S. M. V. (1993). Introduction to functional differential equations. New York: Springer.

    Book  Google Scholar 

  10. Sun, M., Ge, S. S., & Mareels, I. M. Y. (2006). Adaptive repetitive learning control of robotic manipulators without the requirement for initial repositioning. IEEE Transactions on Robotic, 22(3), 563–568.

    Article  Google Scholar 

  11. Ge, S. S., Lee, T. H., & Harris, C. J. (1998). Adaptive neural network control of robotic manipulators. London, U.K.: World Scientific.

    Book  Google Scholar 

  12. Tayebi, A. (2004). Adaptive iterative learning control for robot manipulators. Automatica, 40(7), 1195–1203.

    Article  MathSciNet  Google Scholar 

  13. Lewis, F. L., Lewis, D., & Dawson, M. (2004). Robot manipulator control: Theory and practice. New York: Marcel Dekker.

    Google Scholar 

  14. Zhang, R., Quan, Q., & Cai, K.-Y. (2011). Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances. IET Control Theory and Applications, 5(9), 1140–1146.

    Article  MathSciNet  Google Scholar 

  15. Isidori, A., Marconi, L., & Serrani, A. (2003). Robust autonomous guidance: An internal model-based approach. London: Springer.

    Book  Google Scholar 

  16. Dugard, L., & Verriest, E. I. (1998). Stability and control of time-delay systems. London: Springer.

    Book  Google Scholar 

  17. Burton, T. A., & Zhang, S. (1986). Unified boundedness, periodicity, and stability in ordinary and functional differential equations. Annali di Matematica Pura ed Applicata, 145(1), 129–158.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Quan .

6.9 Appendix

6.9 Appendix

6.1.1 6.9.1 Proof of Lemma 6.1

Let (6.6) be the original system. To apply additive state decomposition (see Sect. 2.2.3), select the primary system as follows:

$$\begin{aligned} \mathbf {A}_{0,\varepsilon }\dot{\mathbf {x}}_{\text {p}}\left( t\right)&=-\mathbf {x}_{\text {p}}\left( t\right) +\mathbf {A}_{1,\varepsilon } \mathbf {x}_{\text {p}}\left( {t}-{T}\right) +\varvec{\delta }\left( t\right) \nonumber \\ \mathbf {x}_{\text {p}}\left( \theta \right)&=\mathbf {v}\left( T+\theta \right) ,\theta \in \left[ -{T,0}\right] , \end{aligned}$$
(6.35)

where \(\mathbf {A}_{0,\varepsilon },\mathbf {A}_{1,\varepsilon }\in \mathbb {R} ^{n\times n}\), \(\varvec{\delta }\left( t\right) \in \mathbb {R} ^{n}\). From the original system (6.6) and the primary system (6.35), the secondary system is determined by additive state decomposition as follows:

$$\begin{aligned} -\mathbf {A}_{0,\varepsilon }\dot{\mathbf {x}}_{\text {p}}\left( t\right)&=-\mathbf {x}_{\text {s}}\left( t\right) +\mathbf {x}_{\text {s}}\left( {t} -{T}\right) +\left( {\mathbf {I}}-\mathbf {A}_{1,\varepsilon }\right) \mathbf {x}_{\text {p}}\left( {t}-{T}\right) -\varvec{\delta }\left( t\right) \nonumber \\ \mathbf {x}_{\text {s}}\left( \theta \right)&=\mathbf {0},\theta \in \left[ -{T,0}\right] . \end{aligned}$$
(6.36)

By additive decomposition,

$$\begin{aligned} \mathbf {x}\left( t\right) =\mathbf {x}_{\text {p}}\left( t\right) +\mathbf {x}_{\text {s}}\left( t\right) . \end{aligned}$$
(6.37)

Let \(\varvec{\delta }\left( t\right) \equiv \mathbf {x}_{\text {s}}\left( {t-T}\right) \). Then

$$ \mathbf {v}\left( t\right) =\mathbf {x}_{\text {p}}\left( t\right) +\varvec{\delta }\left( t+T\right) . $$

Furthermore, using (6.35), model (6.6) can be written as follows:

$$\begin{aligned} \mathbf {A}_{0,\varepsilon }\dot{\mathbf {x}}_{\text {p}}\left( t\right)&=-\mathbf {x}_{\text {p}}\left( t\right) +\mathbf {A}_{1,\varepsilon } \mathbf {x}_{\text {p}}\left( {t}-{T}\right) +\varvec{\delta }\left( t\right) \nonumber \\ \mathbf {v}\left( t\right)&=\mathbf {x}_{\text {p}}\left( t\right) +\varvec{\delta }\left( t+T\right) \nonumber \\ \mathbf {x}_{\text {p}}\left( \theta \right)&=\mathbf {v}\left( T+\theta \right) ,\theta \in \left[ -{T,0}\right] . \end{aligned}$$
(6.38)

In the following sections, the bound on \(\varvec{\delta }\left( t\right) \) will be discussed, \(t\in \left[ 0,\infty \right) .\) From (6.36) and (6.37),

$$\begin{aligned} \mathbf {A}_{0,\varepsilon }\dot{\mathbf {x}}_{\text {p}}\left( t\right) =-\mathbf {x}_{\text {p}}\left( t\right) -\left( {\mathbf {I}}-\mathbf {A} _{1,\varepsilon }\right) \mathbf {x}_{\text {p}}\left( {t}-{T}\right) +\mathbf {v}\left( t\right) \end{aligned}$$
(6.39)

If \(\mathbf {A}_{0,\varepsilon }>0\) and \(\left\| \mathbf {A}_{1,\varepsilon }\right\| <1\), then \(\mathbf {A}_{0,\varepsilon }\dot{\mathbf {x}}_{\text {p} }\left( t\right) =-\mathbf {x}_{\text {p}}\left( t\right) -\left( {\mathbf {I}}_{n}-\mathbf {A}_{1,\varepsilon }\right) \mathbf {x}_{\text {p}}\left( {t}-{T}\right) \) is exponentially stable [16]. Consequently, there exists a bounded and T-periodic function \(\mathbf {x}_{\text {p}}\left( t\right) \) that satisfies (6.39) [17]. Note that \(\varvec{\delta }\left( t\right) \equiv \mathbf {v}\left( t-{T}\right) -\mathbf {x}_{\text {p}}\left( {t} -{T}\right) \) is also a bounded and T-periodic function. Consequently, (6.38) can be rewritten in the form of (6.7). If \(\mathbf {A}_{0,\varepsilon }=\mathbf {0}\) and \(\mathbf {A}_{1,\varepsilon } =\mathbf {I}_{m}\), then (6.6) can be rewritten as (6.7) with \(\varvec{\delta }\left( t\right) \equiv \mathbf {0}.\)

6.1.2 6.9.2 Detailed Proof of Theorem 6.1

(i) If \(\mathbf {A}_{0,\varepsilon }=\mathbf {0}\), then \(\varvec{\delta }\left( t\right) \equiv \mathbf {0}\) by Lemma 6.1. Thus, (6.16) becomes

$$\begin{aligned} \dot{V}\left( t,\mathbf {z}_{t}\right) \le -2k_{\text {e}}\mathbf {e} ^{\text {T}}\left( t\right) \mathbf {M}\left( t\right) \mathbf {e}\left( t\right) . \end{aligned}$$
(6.40)

Then,

$$ \dot{V}\left( t,\mathbf {z}_{t}\right) \le -2c_{3}\left\| \mathbf {e} \left( t\right) \right\| ^{2}. $$

From the above inequality,

$$\begin{aligned} V\left( t,\mathbf {z}_{t}\right) \le V\left( 0,\mathbf {z}_{0}\right) . \end{aligned}$$
(6.41)

Further,

$$ \int _{0}^{t}\left\| \mathbf {e}\left( s\right) \right\| ^{2} \text {d}s\le \frac{1}{2c_{3}}V\left( 0,\mathbf {z}_{0}\right) . $$

Therefore, \(\mathbf {e}\in \mathscr {L}_{\infty }\left[ 0,\infty \right) \cap \mathscr {L}_{2}\left[ 0,\infty \right) \). Next, it is proved that \(\mathbf {e}\left( t\right) \) is uniformly continuous. If this is true, then \(\underset{t\rightarrow \infty }{\lim }\left\| \mathbf {e}\left( t\right) \right\| =0\) by Barbalat’s Lemma. Given that \(\mathbf {e}\in \mathscr {L} _{\infty }\left[ 0,\infty \right) ,\) \(\mathbf {e}\left( t\right) \in K\subset \mathbb {R} ^{m}\ \)for a compact set K. By Assumption 6.1, there exists \(b_{f},\) \(b_{b}>0\) such that \(\left\| \mathbf {f}\left( t,\mathbf {e}\left( t\right) \right) \right\| \le b_{f},\) \(\mathbf {b}\left( t,\mathbf {e} \left( t\right) \right) \) for all \(\left( t,\mathbf {e}\left( t\right) \right) \in \left[ 0,\infty \right) \times K.\) Let \(t_{1}\ \)and\(\ t_{2}\) be any real numbers such that \(0<t_{2}-t_{1}\le h.\) Then,

$$\begin{aligned} \left\| \mathbf {e}\left( t_{2}\right) -\mathbf {e}\left( t_{1}\right) \right\|&=\left\| \int _{t_{1}}^{t_{2}}\dot{\mathbf {e}}\left( s\right) \text {d}s\right\| \nonumber \\&=\left\| \int _{t_{1}}^{t_{2}}\left( \mathbf {f}\left( s,\mathbf {e} \left( s\right) \right) +\mathbf {b}\left( s,\mathbf {e}\left( s\right) \right) \tilde{\mathbf {v}}\left( s\right) \right) \text {d}s\right\| \nonumber \\&\le b_{f}\left( t_{2}-t_{1}\right) +b_{b}\int _{t_{1}}^{t_{2}}\left\| \tilde{\mathbf {v}}\left( s\right) \right\| \text {d}s. \end{aligned}$$
(6.42)

Note that, by (6.41), \(V\left( t,\mathbf {z}_{t}\right) \ \)is bounded for\(\ \)all\(\ t>0\) with respect to the bound \(b_{V}>0\). Hence,

$$ \int _{t-T}^{t}\left\| \tilde{\mathbf {v}}\left( s\right) \right\| ^{2}\text {d}s\le b_{V} $$

for\(\ \)all\(\ t>0.\) Thus,

$$\begin{aligned} \int _{t_{1}}^{t_{2}}\left\| \tilde{\mathbf {v}}\left( s\right) \right\| ^{2}\text {d}s\le Nb_{V}, \end{aligned}$$
(6.43)

where \(N=\left\lfloor \left( t_{2}-t_{1}\right) / T\right\rfloor +1\ \)and \(\left\lfloor \left( t_{2}-t_{1}\right) / T\right\rfloor \) represents the floor integer of \(\left( t_{2}-t_{1}\right) / T\). Using the Cauchy–Schwarz inequality,

$$ \int _{t_{1}}^{t_{2}}\left\| \tilde{\mathbf {v}}\left( s\right) \right\| \text {d}s\le \left( \int _{t_{1}}^{t_{2}}1^{2}\text {d}s\right) ^{\frac{1}{2} }\left( \int _{t_{1}}^{t_{2}}\left\| \tilde{\mathbf {v}}\left( s\right) \right\| ^{2}\text {d}s\right) ^{\frac{1}{2}}. $$

Consequently, \(\left\| \mathbf {e}\left( t_{2}\right) -\mathbf {e}\left( t_{1}\right) \right\| \) in (6.42) is further bounded by

$$ \left\| \mathbf {e}\left( t_{2}\right) -\mathbf {e}\left( t_{1}\right) \right\| \le b_{f}h+h_{1}\sqrt{h}, $$

where (6.43) is utilized and \(h_{1}=\sqrt{Nb_{V}}b_{b}\). Therefore, for any \(\varepsilon >0\), there exists

$$ h=\left( \frac{-h_{1}+\sqrt{h_{1}^{2}+b_{f}\varepsilon }}{2b_{f}}\right) ^{2}>0 $$

such that \(\left\| \mathbf {e}\left( t_{2}\right) -\mathbf {e}\left( t_{1}\right) \right\| <\varepsilon \) for any \(0<t_{2}-t_{1}<h\). This implies that \(\mathbf {e}\left( t\right) \) is uniformly continuous.

(ii) By considering the form of \(V\left( t,\mathbf {z}_{t}\right) \) in (6.14), the inequality

$$\begin{aligned} \gamma _{1}\left\| \mathbf {z}\left( t\right) \right\| ^{2}\le V\left( t,\mathbf {z}_{t}\right) \le \gamma _{2}\left\| \mathbf {z}\left( t\right) \right\| ^{2}+\int _{t-T}^{t}{\left\| \mathbf {z}\left( s\right) \right\| ^{2}}\text {{d}}{s} \end{aligned}$$
(6.44)

is satisfied with \(\gamma _{1}=\min \left( 2k_{\text {e}}c_{1},\lambda _{\min }\left( \mathbf {A}_{0,\varepsilon }\right) \right) \) and \(\gamma _{2} =\max \left( 2k_{\text {e}}c_{2},\lambda _{\max }\left( \mathbf {A}_{0,\varepsilon }\right) \right) .\) If \(\mathbf {A}_{0,\varepsilon }>0\), then \(\varvec{\delta }\in \mathscr {L}_{\infty }\left[ 0,\infty \right) \) by Lemma6.1. Then, inequality (6.16) becomes

$$ \dot{V}\left( t,\mathbf {z}_{t}\right) \le -2\kappa _{1}\left\| \mathbf {z}\left( t\right) \right\| ^{2}+2\kappa _{2}\left\| \mathbf {z}\left( t\right) \right\| , $$

where \(\kappa _{1}=\min \left( \underline{\lambda }_{M}k_{\text {e}},\frac{1}{2}\lambda _{\min }\left( \mathbf {A}_{0,\varepsilon }\right) \right) \ \)and \(\kappa _{2}=\left\| \varvec{\delta }\right\| _{\infty }.\) Given that \(\kappa _{1}>0\), the following inequality holds:

$$ -\kappa _{1}\left\| \mathbf {z}\left( t\right) \right\| ^{2}+2\kappa _{2}\left\| \mathbf {z}\left( t\right) \right\| -\kappa _{1}^{-1} \kappa _{2}^{2}\le 0. $$

Then,

$$\begin{aligned} \dot{V}\left( t,\mathbf {z}_{t}\right) \le -\gamma _{3}\left\| \mathbf {z}\left( t\right) \right\| ^{2}+\sigma \end{aligned}$$
(6.45)

is satisfied with \(\gamma _{3}=\kappa _{1}\) and \(\sigma =\kappa _{1}^{-1} \kappa _{2}^{2}.\) Then, for any value of \(\mathbf {z}_{0},\) the solutions to Eq. (6.13) are uniformly ultimately bounded according to Corollary2.1. This can conclude this proof by noting that \(\left\| \mathbf {e}\left( t\right) \right\| \le \left\| \mathbf {z}\left( t\right) \right\| \) based on the definition of \(\mathbf {z}\left( t\right) \).

6.1.3 6.9.3 Proof of Lemma 6.2

Before proving Lemmas 6.2, 6.3 is first introduced.

Lemma 6.3

Given vectors \(\mathbf {a},\mathbf {b\in } \mathbb {R} ^{m}\), suppose that \(\mathbf {a}=\)sat\(\left( \mathbf {a}\right) .\) Then

$$\begin{aligned} \left( \mathbf {a}-\mathrm{sat}\left( \mathbf {b}\right) \right) ^{\mathrm{T} }\left( \mathbf {b}-\mathrm{sat}\left( \mathbf {b}\right) \right) \le 0. \end{aligned}$$
(6.46)

Proof

Let \(\mathbf {a}\) \(\mathbf {=}\) \(\mathbf {[}a_{1}\) \(\cdots \) \(a_{m}\mathbf {]}^{\text {T}}\) and \(\mathbf {b}\) \(\mathbf {=}\) \(\mathbf {[}b_{1}\) \(\cdots \) \(b_{m}\mathbf {]}^{\text {T}}.\) Then,

$$\begin{aligned} \left( \mathbf {a}-\text {sat}\left( \mathbf {b}\right) \right) ^{\text {T} }\left( \mathbf {b}-\text {sat}\left( \mathbf {b}\right) \right) =\underset{i=1}{\overset{m}{ {\displaystyle \sum } }}\left( a_{i}-\text {sat}_{\beta _{i}}\left( b_{i}\right) \right) ^{\text {T}}\left( b_{i}-\text {sat}_{\beta _{i}}\left( b_{i}\right) \right) . \end{aligned}$$
(6.47)

In the following section, the term \(\left( a_{i}-\text {sat}_{\beta _{i} }\left( b_{i}\right) \right) ^{\text {T}}\left( b_{i}-\text {sat}_{\beta _{i}}\left( b_{i}\right) \right) \) is considered. It is claimed that

$$\begin{aligned} \left( a_{i}-\text {sat}_{\beta _{i}}\left( b_{i}\right) \right) ^{\text {T} }\left( b_{i}-\text {sat}_{\beta _{i}}\left( b_{i}\right) \right) \le 0. \end{aligned}$$
(6.48)

With it, inequality (6.46) holds according to (6.47). Next, inequality (6.48) will be proved. For the case \(\left| b_{i}\right| \le \beta _{i},\) equality (6.48) holds due to \(b_{i}-\)sat\(_{\beta _{i}}\left( b_{i}\right) =0\). There is a strict inequality when \(\left| b_{i}\right| >\beta _{i}.\) It follows for the case \(b_{i}<-\beta _{i}\) that

$$ \left( a_{i}-\text {sat}_{\beta _{i}}\left( b_{i}\right) \right) \left( b_{i}-\text {sat}_{\beta _{i}}\left( b_{i}\right) \right) =\left( a_{i}+\beta _{i}\right) \left( b_{i}+\beta _{i}\right) . $$

Given that \(a_{i}+\beta _{i}>0\) according to \(\mathbf {a}=\)sat\(\left( \mathbf {a}\right) \) and \(b_{i}+\beta _{i}<0,\) \(\left( a_{i}-\text {sat} _{\beta _{i}}\left( b_{i}\right) \right) \left( b_{i}-\text {sat}_{\beta _{i}}\left( b_{i}\right) \right) <0.\) For the case \(b_{i}>\beta _{i}\), it follows that

$$ \left( a_{i}-\text {sat}_{\beta _{i}}\left( b_{i}\right) \right) \left( b_{i}-\text {sat}_{\beta _{i}}\left( b_{i}\right) \right) =\left( a_{i}-\beta _{i}\right) \left( b_{i}-\beta _{i}\right) . $$

Given that \(a_{i}-\beta _{i}<0\) according to \(\mathbf {a}=\)sat\(\left( \mathbf {a}\right) \) and \(b_{i}-\beta _{i}>0,\) \(\left( a_{i}-\text {sat} _{\beta _{i}}\left( b_{i}\right) \right) \left( b_{i}-\text {sat}_{\beta _{i}}\left( b_{i}\right) \right) <0.\) Therefore, (6.48) holds regardless of \(b_{i}\).       \(\square \)

With Lemma 6.3, the proof of Lemma 6.2 is now possible. For simplicity, denote \(\tilde{\mathbf {v}}\left( t-T\right) \) by \(\tilde{\mathbf {v}}_{-T}\left( t\right) .\) If \(\mathbf {A}_{0,\varepsilon }=\mathbf {0}\) and \(\mathbf {A}_{1,\varepsilon }=\mathbf {I}_{m},\) then \(\mathbf {x}_{\text {p} }=\mathbf {v}\ \)and\(\ \varvec{\delta }=\mathbf {0}.\) By (6.17),

$$ \mathbf {0}=-\hat{\mathbf {v}}^{*}\left( t\right) +\hat{\mathbf {v}}\left( t-T\right) +k_{\text {e}}\mathbf {R}^{\text {T}}\left( t\right) \mathbf {e} \left( t\right) . $$

On the other hand,

$$ \mathbf {0}=\mathbf {x}_{\text {p}}\left( t\right) -\mathbf {x}_{\text {p} }\left( t-T\right) . $$

Then,

$$\begin{aligned} \tilde{\mathbf {v}}_{-T}&=\tilde{\mathbf {v}}^{*}+k_{\text {e}} \mathbf {R}^{\text {T}}\mathbf {e}\\&=\tilde{\mathbf {v}}+\left( \left( \hat{\mathbf {v}}-\hat{\mathbf {v}} ^{*}\right) +k_{\text {e}}\mathbf {R}^{\text {T}}\mathbf {e}\right) . \end{aligned}$$

Consequently,

$$\begin{aligned} \tilde{\mathbf {v}}_{-T}^{\text {T}}\tilde{\mathbf {v}}_{-T}&=\tilde{\mathbf {v}}^{\text {T}}\tilde{\mathbf {v}}+\left( \hat{\mathbf {v}}-\hat{\mathbf {v}}^{*}+k_{\text {e}}\mathbf {R}^{\text {T}}\mathbf {e}\right) ^{\text {T} }\left( \hat{\mathbf {v}}-\hat{\mathbf {v}}^{*}+k_{\text {e}}\mathbf {R} ^{\text {T}}\mathbf {e}\right) +2\tilde{v}^{\text {T}}\left( \hat{\mathbf {v} }-\hat{\mathbf {v}}^{*}+k_{\text {e}}\mathbf {R}^{\text {T}}\mathbf {e}\right) \\&=\tilde{\mathbf {v}}^{\text {T}}\tilde{\mathbf {v}}+\left( \hat{\mathbf {v} }-\hat{\mathbf {v}}^{*}+k_{\text {e}}\mathbf {R}^{\text {T}}\mathbf {e}\right) ^{\text {T}}\left( \hat{\mathbf {v}}-\hat{\mathbf {v}}^{*}+k_{\text {e} }\mathbf {R}^{\text {T}}\mathbf {e}\right) \\&\text { }-2\left( \mathbf {v}-\text {sat}\left( \hat{\mathbf {v}}^{*}\right) \right) ^{\text {T}}\left( \hat{\mathbf {v}}^{*}-\text {sat} \left( \hat{\mathbf {v}}^{*}\right) \right) +2\tilde{\mathbf {v} }^{\text {T}}k_{\text {e}}\mathbf {R}^{\text {T}}\mathbf {e}. \end{aligned}$$

Furthermore, given that \(\left( \mathbf {v}-\text {sat}\left( \hat{\mathbf {v} }^{*}\right) \right) ^{\text {T}}\left( \hat{\mathbf {v}}^{*}-\text {sat}\left( \hat{\mathbf {v}}^{*}\right) \right) \le 0\) by Lemma 6.3, it follows that

$$ \tilde{\mathbf {v}}^{\text {T}}\tilde{\mathbf {v}}-\tilde{\mathbf {v}} _{-T}^{\text {T}}\tilde{\mathbf {v}}_{-T}\le -2k_{\text {e}}\tilde{\mathbf {v} }^{\text {T}}\mathbf {R}^{\text {T}}\mathbf {e}. $$

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quan, Q., Cai, KY. (2020). Filtered Repetitive Control with Nonlinear Systems: An Adaptive-Control-Like Method. In: Filtered Repetitive Control with Nonlinear Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-1454-8_6

Download citation

Publish with us

Policies and ethics