Skip to main content

Detection and Prediction of Schizophrenia Using Magnetic Resonance Images and Deep Learning

  • Conference paper
  • First Online:
Cognitive Informatics and Soft Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1040))

  • 655 Accesses

Abstract

Researchers are continuously making breakthroughs on the impact of deep learning in the medical industry. This approach of Deep Learning (DL) in neuroimaging creates new insights in modification of brain structures during various disorders, helping capture complex relationships that may not have been visible otherwise. The main aim of proposed work is to effectively detect the presence of schizophrenia, a mental disorder that has drastic implications and is hard to spot, using Magnetic Resonance Image Features from fMRI Database. Dataset is then fed to a Neural Network classifier, which learns to predict and give indications for preventing the onset of Schizophrenia using regression models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawrie, S., Abukmeil, S.: Brain abnormality in schizophrenia: a systematic and quantitative review of volumetric magnetic resonance imaging studies. Br. J. Psychiatry 172(2), 110–120 (1998). https://doi.org/10.1192/bjp.172.2.110

    Article  Google Scholar 

  2. Weinberger, D.R., Torrey, E.F., Neophytides, A.N., Wyatt, R.J.: Lateral cerebral ventricular enlargement in chronic schizophrenia. Arch. Gen. Psychiatry 36(7), 735–739 (1979)

    Article  Google Scholar 

  3. Fornito, A., Yücel, M., Patti, J., Wood, S.J., Pantelis, C.: Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophr. Res. 108(1–3), 104–113 (2009). ISSN 0920-9964

    Article  Google Scholar 

  4. Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D.: Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24(3), 663–676 (2014). https://doi.org/10.1093/cercor/bhs352

    Article  Google Scholar 

  5. Mohammad, A., Kent, K., Godfrey, P., Vince, C.: Classification of schizophrenia patients based on resting-state functional network connectivity. Front. Neurosci. 3, 133 (2013). https://www.frontiersin.org/article/10.3389/fnins.2013.00133

  6. Segall, J.M., Allen, E.A., Jung, R.E., Erhardt, E.B., Arja, S.K., Kiehl, K.A., Calhoun, V.D.: Correspondence between structure and function in the human brain at rest. Front. Neuroinf. 6, 10 (2012). https://www.frontiersin.org/article/10.3389/fninf.2012.00010

  7. Xu, L., Groth, K.M., Pearlson, G., Schretlen, D.J., Calhoun, V.D.: Source-based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia. Hum. Brain Mapp. 30, 711–724 (2009). https://doi.org/10.1002/hbm.20540

    Article  Google Scholar 

  8. Lecun, Y., Bengio, J., Hinton, J.: Deep learning. Nature 521, 436 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  9. Lee, J.G., Jun, S., Cho, Y.W., Lee, H., Kim, G.B., Seo, J.B., Kim, N.: Deep learning in medical imaging: general overview. Korean J. Radiol. 18(4), 570–584 (2017). https://doi.org/10.3348/kjr.2017.18.4.570

    Article  Google Scholar 

  10. Sharma, A., Ramkiran, S.: MRI based schizophrenia patient classification: a meta-cognitive approach. In: 2015 International Conference on Cognitive Computing and Information Processing (CCIP), Noida, pp. 1–6, 2015. https://doi.org/10.1109/ccip.2015.7100719

  11. Zhang, J., Zong, C.: Deep neural networks in machine translation: an overview. IEEE Intell. Syst. 30(05), 16–25 (2015). https://doi.org/10.1109/MIS.2015.69

    Article  Google Scholar 

  12. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015). ISSN 0893-6080, https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  13. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2014)

    Google Scholar 

  14. Allen, E.A., Erhardt, E.B., Damaraju, E., Gruner, W., Segall, J.M., Silva, R.F., Havlicek, M., Rachakonda, S., Fries, J., Kalyanam, R., Michael, A.M.: A baseline for the multivariate comparison of resting-state networks. Front. Syst. Neurosci. 5, 2 (2011)

    Google Scholar 

  15. Ulloa, A., Plis, S., Erhardt, E., Calhoun, V.: Synthetic structural magnetic resonance image generator improves deep learning prediction of schizophrenia. In: 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP), Boston, MA, pp. 1–6, 2015. https://doi.org/10.1109/mlsp.2015.7324379

  16. Nimkar, A.V., Kubal, D.R.: Optimization of schizophrenia diagnosis prediction using machine learning techniques. In: 2018 4th International Conference on Computer and Information Sciences (ICCOINS), Kuala Lumpur, pp. 1–6, 2018. https://doi.org/10.1109/iccoins.2018

  17. Talo, M., Baloglu, U.B., Yıldırım, Ö., Acharya, U.R.: Application of deep transfer learning for automated brain abnormality classification using MR images. Cogn. Syst. Res. 54, 176–188 (2019). ISSN 1389-0417, https://doi.org/10.1016/j.cogsys.2018.12.007

    Article  Google Scholar 

  18. de Moura, A.M., Pinaya, W.H.L., Gadelha, A., Zugman, A., Noto, C., Cordeiro, Q., Belangero, S.I., Jackowski, A.P., Bressan, R.A., Sato, J.R.: Investigating brain structural patterns in first episode psychosis and schizophrenia using MRI and a machine learning approach. Psychiatry Res. Neuroimaging 275, 14–20 (2018). ISSN 0925-4927

    Google Scholar 

  19. Bordier, C., Nicolini, C., Forcellini, G., Bifone, A.: Disrupted modular organization of primary sensory brain areas in schizophrenia. NeuroImage Clin. 18, 682–693 (2018). ISSN 22131582, https://doi.org/10.1016/j.nicl.2018.02.035

    Article  Google Scholar 

  20. De Pierrefeu, A., Löfstedt, T., Laidi, C., Hadj-Selem, F., Bourgin, J., Hajek, T., Spaniel, F., Kolenic, M., Ciuciu, P., Hamdani, N., Leboyer, M.: Identifying a neuroanatomical signature of schizophrenia, reproducible across sites and stages, using machine learning with structured sparsity. Acta Psychiatr. Scand. 1–10 (2018) (Wiley)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Naren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Srivathsan, S., Sreenithi, B., Naren, J. (2020). Detection and Prediction of Schizophrenia Using Magnetic Resonance Images and Deep Learning. In: Mallick, P., Balas, V., Bhoi, A., Chae, GS. (eds) Cognitive Informatics and Soft Computing. Advances in Intelligent Systems and Computing, vol 1040. Springer, Singapore. https://doi.org/10.1007/978-981-15-1451-7_10

Download citation

Publish with us

Policies and ethics