Skip to main content

Photocatalysis as a Clean Technology for the Degradation of Petrochemical Pollutants

  • Chapter
  • First Online:

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 18))

Abstract

Photocatalysis as a technology does satisfy the criteria as a clean technology in application and is suitable for the degradation of petrochemical pollutants. An ideal photocatalyst is expected to conform to properties of photoactivity, biological and chemical inertness, stability toward photo-corrosion, suitable for visible or near UV light energy harnessing, be low cost and be nontoxic in nature. The high stability of TiO2 allows diverse applications such as in electro-ceramics, glass and in photocatalytic degradation of chemicals in water and air. The oxide particles can be used in the form of suspensions in slurry reactors as well as thin film coating agents. The suspended photocatalyst has been demonstrated to be very efficient degrading different classes of organic compounds. The major concern of the suspended photocatalyst system is the inability to reclaim the semiconductor catalyst in suspended slurry-type applications. This drawback has been addressed in various ways through innovative developments, which are specifically aimed at addressing this issue.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aghighi A, Haghighat F (2015) Evaluation of nano-titanium dioxide (TiO2) catalysts for ultraviolet photocatalytic oxidation air cleaning devices. J Environ Chem Eng 3:1622–1629

    Article  CAS  Google Scholar 

  • Aljuboury DA, Palaniandy P, Aziz HBA, Feroz S (2015) Treatment of petroleum wastewater using combination of solar photo-two catalyst TiO2 and photo-Fenton process. J Environ Chem Eng 3(2):1117–1124

    Article  CAS  Google Scholar 

  • Al-Sabahi J, Bora T, Al-Abri M, Dutta J (2017) Efficient visible light photocatalysis of benzene, toluene, ethylbenzene and xylene (BTEX) in aqueous solutions using supported zinc oxide nanorods. PLoS One 12(12). https://doi.org/10.1371/journal.pone.0189276

    Article  CAS  Google Scholar 

  • Álvarez AM, Carral P, Hernández Z, Almendros G (2016) Hydrocarbon pollution from domestic oil recycling industries in peri-urban soils. Lipid molecular assemblages. J Environ Chem Eng 4(1):695–703

    Article  CAS  Google Scholar 

  • Andreozzi R, Caprio V, Insola A, Marotta F (1999) Advanced Oxidation Processes (AOP) for water purification and recovery. Catal Today 53:51–59

    Article  CAS  Google Scholar 

  • Axelsson G, Barregard L, Sallsten G, Holmberg E (2010) Cancer incidence in a petrochemical industry area in Sweden. Sci Total Environ 408(20):4482–4487

    Article  CAS  Google Scholar 

  • Balasubramani K, Sivarajaseka N (2018) A short account on petrochemical industry effluent treatment. Int J Petrochem Sci Eng 3(1):12–13

    Google Scholar 

  • Belli S, Benedetti M, Comba P, Lagravinese D, Martucci V et al (2004) Case-control study on cancer risk associated to residence in the neighbourhood of a petrochemical plant. Eur J Epidemiol 19(1):49–54

    Article  CAS  Google Scholar 

  • Blanco-Galvez J, Fernández-Ibánez P, Malato-Rodríguez S (2007) Solar photocatalytic detoxification and disinfection of water: recent overview. J Sol Energy Eng 129:4–15

    Article  CAS  Google Scholar 

  • Bruice PY (2004) Organic Chemistry. Upper Saddle River, Pearson/Prentice Hall

    Google Scholar 

  • Bustillo-Lecompte CF, Kakar D, Mehrvar M (2018) Photochemical treatment of benzene, toluene, ethylbenzene, and xylenes (BTEX) in aqueous solutions using advanced oxidation processes: Towards a cleaner production in the petroleum refining and petrochemical industries. J Clean Prod 186:609–617

    Article  CAS  Google Scholar 

  • Chen YM, Lin WY, Chan CC (2014) The impact of petrochemical industrialisation on life expectancy and per capita income in Taiwan: an 11-year longitudinal study. BMC Public Health 14:247–248

    Article  CAS  Google Scholar 

  • Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  Google Scholar 

  • De la Cruz N, Dantas RF, Gimenez J, Esplugas S (2013) Photolysis and TiO2 photocatalysis of the pharmaceutical propranolol: solar and artificial light. Appl Catal Environ 130:249–256

    Article  CAS  Google Scholar 

  • Dimoglo A, Akbulut HY, Cihan F, Karpuzcu M (2004) Petrochemical wastewater treatment by means of clean electrochemical technology. Clean Technol Environ Policy 6(4):288–295

    Article  CAS  Google Scholar 

  • El-Naas MH, Al-Zuhair S, Al-Lobaney A, Makhlouf S (2009) Assessment of electrocoagulation for the treatment of petroleum refinery wastewater. J Environ Manage 91:180–185

    Article  CAS  Google Scholar 

  • Environmental Protection Agency (EPA) (1977) Revision of emission factors for petroleum refining, EPA-450/3-77-030. U. S. Environmental Protection Agency, Research Triangle Park

    Google Scholar 

  • Fox AM, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    Article  CAS  Google Scholar 

  • Frumkin H, Hess J, Vindigni S (2007) Peak petroleum and public health. JAMA 298(14):1688–1690

    Article  CAS  Google Scholar 

  • Fujishima A, Zhang X, Tryk DA (2008) Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  • Gerischer H, Heller A (1991) The role of oxygen in photooxidation of organic molecules on semiconductor particles. J Phys Chem 95:5261–5267

    Article  CAS  Google Scholar 

  • Haghollahi A, Fazaelipoor MH, Schaffie M (2016) The effect of soil type on the bioremediation of petroleum contaminated soils. J Environ Manage 180:197–201

    Article  CAS  Google Scholar 

  • Hassan M, Zhao Y, Xie B (2016) Employing TiO2 photocatalysis to deal with landfill leachate: Current status and development. Chem Eng J 285:264–275

    Article  CAS  Google Scholar 

  • Hess J, Bednarz D, Bae J, Jessica P (2011) Petroleum and health care: evaluating and managing health care’s vulnerability to petroleum supply shifts. Am J Public Health 101(9):1568–1579

    Article  Google Scholar 

  • Hoffmann RM, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:65–96

    Article  Google Scholar 

  • Horvath I, Anastas PT (2007) Introduction: green chemistry. Chem Rev 107:2167–2168

    Article  CAS  Google Scholar 

  • Hu G, Li J, Zeng G (2013) Recent development in the treatment of oily sludge from petroleum industry: a review. J Hazard Mater 261:470–490

    Article  CAS  Google Scholar 

  • Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts. 3:1–29

    Article  CAS  Google Scholar 

  • Jemli M, Zaghden H, Rezgi F, Kchaou S, Aloui F, Sayadi S (2017) Biotreatment of petrochemical wastewater: a case study from northern Tunisia. Water Environ Res 89:228–237

    Article  CAS  Google Scholar 

  • Khuzwayo Z, Chirwa EMN (2015) Modelling and simulation of photocatalytic oxidation mechanism of chlorohalogenated substituted phenols in batch systems: Langmuir-Hinshelwood approach. J Hazard Mater 300:459–466

    Article  CAS  Google Scholar 

  • Knight RL, Kadlec RH, Ohlendorf HM (1999) The use of treatment wetlands for petroleum industry effluents. Environ Sci Tech 33(7):973–980

    Article  CAS  Google Scholar 

  • Lathasree S, Rao AN, SivaSankar B, Sadasivam V, Rengaraj K (2004) Heterogeneous photocatalytic mineralisation of phenols in aqueous solutions. J Mol Catal A Chem 223:101–105

    Article  CAS  Google Scholar 

  • Lazar MA, Varghese S, Nair SS (2012) Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts 2:572–601

    Article  CAS  Google Scholar 

  • Lettinga G, Rebac S, Zeeman G (2001) Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol 19:363–370

    Article  CAS  Google Scholar 

  • Li XH, Chen S, Angelidaki I, Zhang YF (2018) Bio-electro-Fenton processes for wastewater treatment: advances and prospects. Chem Eng J 354:492–506

    Article  CAS  Google Scholar 

  • Liang J, Mai W, Tang J, Wei Y (2019) Highly effective treatment of petrochemical wastewater by a super-sized industrial scale plant with expanded granular sludge bed bioreactor and aerobic activated sludge. Chem Eng J 360:15–23

    Article  CAS  Google Scholar 

  • Lin CK, Tsai TY, Liu JC, Chen MC (2001a) Enhanced biodegradation of petrochemical wastewater using ozonation and BAC advanced treatment system. Water Res 35(3):699–704

    Article  CAS  Google Scholar 

  • Lin MC, Yu HS, Tsai SS, Cheng BH, Hsu TY et al (2001b) Adverse pregnancy outcome in a petrochemical polluted area in Taiwan. J Toxicol Environ Health A 63(8):565–574

    Article  CAS  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  • Lousada CM, Brinck T, Jonsson M (2015) Application of reactivity descriptors to the catalytic decomposition of hydrogen peroxide at oxide surfaces. Comput Theoret Chem 1070:108–116

    Article  CAS  Google Scholar 

  • Luginaah IN, Taylor SM, Elliott SJ, Eyles JD (2002) Community reappraisal of the perceived health effects of a petroleum industry. Soc Sci Med 55(1):47–61

    Article  Google Scholar 

  • Macarie H (2005) Overview of the application of anaerobic treatment to chemical and petrochemical wastewaters. Water Sci Technol 42(5–6):201–214

    Google Scholar 

  • Mattiusi EM, Kaminari NMS, Ponte MJJS, Ponte HA (2015) Behavior analysis of a porous bed electrochemical reactor the treatment of petrochemical industry wastewater contaminated by hydrogen sulfide (H2S). Chem Eng J 275:305–314

    Article  CAS  Google Scholar 

  • Mechhoud E-A, Rouainia M, Rodriguez M (2016) A new tool for risk analysis and assessment in petrochemical plants. Alex Eng J 55(3):2919–2931

    Article  Google Scholar 

  • Medianu S, Mircioiu M, Popescu D (2012) Supervisory control for ethylene production in petrochemical installations. IFAC Proc 45(6):230–235

    Article  Google Scholar 

  • Metcalf and Eddy, Inc. (2003) Wastewater engineering: treatment and reuse. McGraw-Hill, Boston

    Google Scholar 

  • Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A 108:1–35

    Article  CAS  Google Scholar 

  • Mirzaei A, Ebadi A, Khajavi P (2013) Kinetic and equilibrium modeling of single and binary adsorption of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) onto nano-perfluorooctyl alumina. Chem Eng J 231:550–560

    Article  CAS  Google Scholar 

  • Naderi KV, Bustillo-Lecompte CF, Mehrvar M, Abdekhodaie MJ (2017) Combined UV-C/H2O2-VUV processes for the treatment of an actual slaughterhouse wastewater. J Environ Sci Health B 52(5):314–325

    Article  CAS  Google Scholar 

  • Neff RA, Parker CL, Kirschenmann FL, Tinch J, Lawrence RS (2011) Peak oil. Food Syst Public Health 101(9):1587–1597

    Google Scholar 

  • Oppenlander T (2003) Photochemical purification of water and air-advanced oxidation processes (AOPs): principles, reaction mechanisms, reactor concepts. Wiley-VCH, New York

    Google Scholar 

  • Parsons S (2004) Advanced oxidation processes for water and wastewater treatment. IWA Publishing, London

    Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal Environ 125:331–349

    Article  CAS  Google Scholar 

  • Peral J, Domènech X, Ollis DF (1997) Heterogeneous photocatalysis for purification, decontamination and deodorization of air. J Chem Technol Biotechnol 70(2):117–140

    Article  CAS  Google Scholar 

  • Romano F (1990) Oil and water don’t mix: the application of oil-water separation technologies in storm water quality management. Metro, Seattle

    Google Scholar 

  • Sahel K, Elsellami L, Mirali I, Dappozze F, Bouhent M, Guillard C (2016) Hydrogen peroxide and photocatalysis. Appl Catal Environ 188:106–112

    Article  CAS  Google Scholar 

  • Schwarz HA, Dodson RW (1989) Reduction potentials of CO2- and the alcohol radicals. J Phys Chem 93:409–414

    Article  CAS  Google Scholar 

  • Schwitzgebel J, Ekerdt JG, Gerischer H, Heller A (1995) Role of oxygen molecule and of the photogenerated electron in TiO2. Photocatalysed air oxidation reactions. J Phys Chem 99:5633–5638

    Article  CAS  Google Scholar 

  • Singh P, Ojha A, Borthakur A, Singh R, Lahiry D, Tiwary D, Kumar-Mishra P (2016) Emerging trends in photodegradation of petrochemical wastes: a review. Environ Sci Pollut Res 23(22):22340–22364

    Article  CAS  Google Scholar 

  • Sirtori C, Agüera A, Gernjak W, Malato S (2010) Effect of water-matrix composition on trimethoprim solar photodegradation kinetics and pathways. Water Res 44:2735–2744

    Article  CAS  Google Scholar 

  • Souza EC, Vessoni-Penna TC, de Souza Oliveira RP (2014) Biosurfactant-enhanced hydrocarbon bioremediation: an overview. Int Biodeter Biodegr 89:88–94

    Article  CAS  Google Scholar 

  • Stasik S, Wick LY, Wendt-Potthoff K (2015) Anaerobic BTEX degradation in oil sands tailings ponds: impact of labile organic carbon and sulfate-reducing bacteria. Chemosphere 138:133–139

    Article  CAS  Google Scholar 

  • Teoh WY, Amal R, Scott J (2012) Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J Phys Chem Lett 3:629–639

    Article  CAS  Google Scholar 

  • Tisa F, Abdul-Raman AA, Wan-Daud WMA (2014) Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review. J Environ Manage 146:260–275

    Article  CAS  Google Scholar 

  • Tony MA, Zhao YQ, Purcell PJ, El-Sherbiny MF (2009) Evaluating the photo-catalytic application of Fenton’s reagent augmented with TiO2 and ZnO for the mineralization of an oil-water emulsion. J Environ Sci Health A 44(5):488–493

    Article  CAS  Google Scholar 

  • Vaferi B, Bahmani M, Keshavarz P, Mowla D (2014) Experimental and theoretical analysis of the UV/H2O2 advanced oxidation processes treating aromatic hydrocarbons and MTBE from contaminated synthetic wastewaters. J Environ Chem Eng 2(3):1252–1260

    Article  CAS  Google Scholar 

  • Vaiopoulou E, Melidis P, Aivasidis A (2005) Sulphide removal in wastewater from petrochemical industries by autotrophic denitrification. Water Res 39(17):4101–4109

    Article  CAS  Google Scholar 

  • Vargas A, Soto G, Moreno J, Buitron G (2000) Observer-based time-optimal control of an aerobic SBR for chemical and petrochemical wastewater treatment. Water Sci Technol 42(5-6):163–170

    Article  CAS  Google Scholar 

  • Varjani SJ, Gnansounou E, Pandey A (2017) Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere 188:280–291

    Article  CAS  Google Scholar 

  • Viguri J, Verde J, Irabien A (2002) Environmental assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Santander Bay, Northern Spain. Chemosphere 48:157–165

    Article  CAS  Google Scholar 

  • Vinod VP, Anirudhan TS (2002) Photocatalytic degradation for environmental applications - a review. J Chem Technol Biotechnol 77(1):102–116

    Article  CAS  Google Scholar 

  • Wang Y, Wang Q, Li M, Yang Y, He W, Yan G, Guo S (2016) An alternative anaerobic treatment process for treatment of heavy oil refinery wastewater containing polar organics. Biochem Eng J 105:44–51

    Article  CAS  Google Scholar 

  • Wang M, Peng Z, Qian J, Li H, Zhao Z, Fu X (2018) Highly efficient solar-driven photocatalytic degradation on environmental pollutants over a novel C fibers@MoSe2 nanoplates core-shell composite. J Hazard Mater 347:403–411

    Article  CAS  Google Scholar 

  • Wong JM (2000) Petrochemicals. Water Environ Res 72:1–21

    Article  Google Scholar 

  • Wu C, Gao Z, Zhou Y, Liu M, Song J, Yua Y (2015) Treatment of secondary effluent from a petrochemical wastewater treatment plant by ozonation-biological aerated filter. J Chem Technol Biotechnol 90:543–549

    Article  CAS  Google Scholar 

  • Xiaoqiang J, Dayao J, Chen L, Wenyu L (2019) Characterization and analysis of petrochemical wastewater through particle size distribution, biodegradability, and chemical composition. Chin J Chem Eng 27(2):444–451

    Google Scholar 

  • Yamazaki S, Siroma Z, Senoh H, Ioroi T, Fujiwara N, Yasuda K (2008) A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel. J Power Sources 178:20–25

    Article  CAS  Google Scholar 

  • Yang Q, Xiong PP, Ding PY, Chu LB, Wang JL (2015) Treatment of petrochemical wastewater by microaerobic hydrolysis and anoxic/oxic processes and analysis of bacterial diversity. Bioresour Technol 196:169–175

    Article  CAS  Google Scholar 

  • Zhang SY, Wu CY, Zhou YX, Wang YN, He XW (2018) Effect of wastewater particles on catalytic ozonation in the advanced treatment of petrochemical secondary effluent. Chem Eng J 345:280–289

    Article  CAS  Google Scholar 

  • Zheng G, Richardson B (1999) Petroleum hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in Hong Kong marine sediments. Chemosphere 38:2625–2632

    Article  CAS  Google Scholar 

  • Zhong Y, Zhu L (2013) Distribution input pathway and soil–air exchange of polycyclic aromatic hydrocarbons in Banshan Industry Park, China. Sci Total Environ 444:177–182

    Article  CAS  Google Scholar 

  • Zolfaghari R, Fakhru’l-Razi A, Abdullah LC, Elnashaie SSEH, Pendashteh A (2016) Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Sep Purif Technol 170:337–407

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakhele (Zack) Khuzwayo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khuzwayo, Z.(., Chirwa, E.M.N. (2020). Photocatalysis as a Clean Technology for the Degradation of Petrochemical Pollutants. In: Bharagava, R. (eds) Emerging Eco-friendly Green Technologies for Wastewater Treatment. Microorganisms for Sustainability, vol 18. Springer, Singapore. https://doi.org/10.1007/978-981-15-1390-9_8

Download citation

Publish with us

Policies and ethics