Skip to main content

Removal of Organic Pollutants from Contaminated Water Bodies by Using Aquatic Macrophytes Coupled with Bioenergy Production and Carbon Sequestration

  • Chapter
  • First Online:
Book cover Emerging Eco-friendly Green Technologies for Wastewater Treatment

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 18))

Abstract

The burgeoning population and continuous increase in developmental activities are the major cause of rampant release of numerous environmental contaminants. These contaminants pollute the soil, air and water and ultimately enter the food chain. Several physical, chemical and biological techniques have been developed to remove these contaminants; however, these methods are quite costly and not environmentally sound. Specifically, organic contaminants like pesticides, phenols, oils, pharmaceuticals and dyes are entering aquatic habitats and damaging these ecosystems. Application of aquatic macrophytes for the removal of organic contaminants has proved to be an eco-friendly and efficient tool to remediate aquatic ecosystems. Aquatic macrophytes such as Eichhorn crassipes, Elodea canadensis, Lemna minor, Pistia stratiotes, and Trapa natans can be used for reclamation of contaminated waste and wastewater systems. In addition, these plants help in carbon sequestration, and the biomass of these plants may be used to produce bioenergy (biofuel) at the same time. In this chapter, the potential of aquatic macrophytes for phytoremediation and bioenergy production along with carbon sequestration have been thoroughly discussed.

Ankit and Lala Saha contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40(3–4):997–1026

    Article  CAS  Google Scholar 

  • Albers PH, Camardese MB (1993) Effects of acidification on metal accumulation by aquatic plants and invertebrates. 1. Constructed wetlands. Environ Toxicol Chem 12:959–967

    Article  CAS  Google Scholar 

  • Al-Degs YS, El-Barghouthi MI, El-Sheikh AH, Walker GM (2008) Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigments 77(1):16–23

    Article  CAS  Google Scholar 

  • Angassa K, Leta S, Mulat W, Kloos H, Meers E (2018) Organic matter and nutrient removal performance of horizontal subsurface flow constructed wetlands planted with Phragmite karka and Vetiveria zizanioide for treating municipal wastewater. Environ Process 5(1):115–130

    Article  CAS  Google Scholar 

  • Anjos ML, Isique WD, Albertin LL, Matsumoto T, Henares MNP (2018) Parabens removal from domestic sewage by free-floating aquatic Macrophytes. Waste Biomass Valorization 10:2221–2226

    Article  CAS  Google Scholar 

  • Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727

    Article  CAS  Google Scholar 

  • Bauddh K, Singh RP (2015a) Effects of organic and inorganic amendments on bio-accumulation and partitioning of Cd in Brassica juncea and Ricinus communis. Ecol Eng 74:93–100

    Article  Google Scholar 

  • Bauddh K, Singh RP (2015b) Assessment of metal uptake capacity of castor bean and mustard for phytoremediation of nickel from contaminated soil. Biorem J 19(2):124–138

    Article  CAS  Google Scholar 

  • Bauddh K, Kumar A, Srivastava S, Singh RP, Tripathi RD (2016a) A study on the effect of cadmium on the antioxidative defense system and alteration in different functional groups in castor bean and Indian mustard. Arch Agron Soil Sci 62(6):877–891

    Article  CAS  Google Scholar 

  • Bauddh K, Singh B, Singh RP (2016b) Ricinus communis L. as a value-added alternative for restoration of cadmium contaminated and degraded agricultural ecosystem. Bull Arch Environ Contam Toxicol 96(2):265–269

    Article  CAS  Google Scholar 

  • Bergier I, Salis SM, Miranda CH, Ortega E, Luengo CA (2012) Biofuel production from water hyacinth in the Pantanal wetland. Ecohydrol Hydrobiol 12(1):77–84

    Article  CAS  Google Scholar 

  • Bharti P, Singh B, Bauddh K, Dey RK, Korstad J (2017) Efficiency of bioenergy plant in phytoremediation of saline and sodic soil. In: Phytoremediation potential of bioenergy plants. Springer, Singapore, pp 353–369

    Chapter  Google Scholar 

  • Bhattacharya A, Kumar P (2010) Water hyacinth as a potential biofuel crop. Electron J Environ Agric Food Chem 9(1):112–122

    CAS  Google Scholar 

  • Birk S, Willby N (2010) Towards harmonization of ecological quality classification: establishing common grounds in European Macrophyte assessment for rivers. Hydrobiologia 652:149–163

    Article  Google Scholar 

  • Borgwardt F, Robinson L, Trauner D, Teixeira H, Nogueira AJ, Lillebø AI, Piet G, Kuemmerlen M, O’Higgins T, McDonald H, Arevalo-Torres J (2019) Exploring variability in environmental impact risk from human activities across aquatic ecosystems. Sci Total Environ 652:1396–1408

    Article  CAS  Google Scholar 

  • Bridgwater AV (1999) Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrol 51(1–2):3–22

    Article  CAS  Google Scholar 

  • Burke MC (2011) An assessment of carbon, nitrogen, and phosphorus storage and the carbon sequestration potential in Arcata’s constructed wetlands for wastewater treatment. Doctoral dissertation, Humboldt State University

    Google Scholar 

  • Campanella BF, Bock C, Schröder P (2002) Phytoremediation to increase the degradation of PCBs and PCDD/Fs. Environ Sci Pollut R 9(1):3–85

    Article  Google Scholar 

  • Chakravarty P, Bauddh K, Kumar M (2017) Phytoremediation: a multidimensional and ecologically viable practice for the cleanup of environmental contaminants. In: Bauddh K, Singh B, Korstad J (eds) Phytoremediation potential of bioenergy plants. Springer Nature, Singapore, pp 1–46

    Google Scholar 

  • Chambers PA, Lacoul P, Murphy KJ, Thomaz SM (2007) Global diversity of aquatic macrophytes in freshwater. In: Freshwater animal diversity assessment. Springer, Dordrecht, pp 9–26

    Google Scholar 

  • Chandra R, Bharagava RN, Kapley A, Purohit HJ (2011) Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant during the degradation and detoxification of tannery wastewater. Bioresour Technol 102:2333–2341

    Article  CAS  Google Scholar 

  • Das SS, Jana BB (2003) Fish-macrophyte association as a low-cost strategy for wastewater reclamation. Ecol Eng 21(1):21–41

    Article  Google Scholar 

  • Day JA, Saunders FM (2004) Glycosidation of chlorophenols by Lemna minor. Environ Toxicol Chem 23(3):613–620

    Article  CAS  Google Scholar 

  • DeSolla S, Fernie K, Ashpole S (2008) Snapping turtles (Chelydra serpentina) as bioindicators in Canadian areas of concern in the Great Lakes Basin. II. Changes in hatching success and hatchling deformities in relation to persistent organic pollutants. Environ Pollut 153:529–536

    Article  CAS  Google Scholar 

  • Dordio A, Carvalho AP, Teixeira DM, Dias CB, Pinto AP (2010) Removal of pharmaceuticals in microcosm constructed wetlands using Typha spp. and LECA. Bioresour Technol 101(3):886–892

    Article  CAS  Google Scholar 

  • Dosnon-Olette R, Couderchet M, Eullaffroy P (2009) Phytoremediation of fungicides by aquatic macrophytes: toxicity and removal rate. Ecotoxicol Environ Saf 72(8):2096–2101

    Article  CAS  Google Scholar 

  • El-Gendy AS, Biswas N, Bewtra JK (2006) Municipal landfill leachate treatment for metal removal using water hyacinth in a floating aquatic system. Water Environ Res 78:951–964

    Article  CAS  Google Scholar 

  • El-Kheir WA, Ismail G, El-Nour FA, Tawfik T, Hammad D (2007) Assessment of the efficiency of duckweed (Lemna gibba) in wastewater treatment. Int J Agri Biol (Pakistan) 9(5):681–687

    Google Scholar 

  • Fleeger JW, Carman KR, Nisbet RM (2003) Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ 317(1–3):207–233

    Article  CAS  Google Scholar 

  • Gao J, Garrison AW, Hoehamer C, Mazur CS, Wolfe NL (2000) Uptake and Phytotransformation of o, p′-DDT and p, p′-DDT by axenically cultivated aquatic plants. J Agric Food Chem 48(12):6121–6127

    Article  CAS  Google Scholar 

  • Gao S, Tanji KK, Peters DW, Lin Z, Terry N (2003) Selenium removal from irrigation drainage water flowing through constructed wetland cells with special attention to accumulation in sediments. Water Air Soil Pollut 144(1–4):263–284

    Article  CAS  Google Scholar 

  • Garrison AW, Nzengung VA, Avants JK, Ellington JJ, Jones WJ, Rennels D, Wolfe NL (2000) Phytodegradation of p, p′-DDT and the enantiomers of o, p′-DDT. Environ Sci Technol 34(9):1663–1670

    Article  CAS  Google Scholar 

  • Gaudernack B (1998) Photoproduction of hydrogen, IEA agreement on the production and utilization of hydrogen annual Report. IEA

    Google Scholar 

  • Gecheva G, Yurukova L, Cheshmedjiev S (2013) Patterns of aquatic macrophyte species composition and distribution in Bulgarian rivers. Turk J Bot 37(1):99–110

    Google Scholar 

  • Gobas FA, McNeil EJ, Lovett-Doust L, Haffner GD (1991) Bioconcentration of chlorinated aromatic hydrocarbons in aquatic macrophytes. Environ Sci Technol 25(5):924–929

    Article  CAS  Google Scholar 

  • Goswami G, Pal S, Palit D (2010) Studies on the physico-chemical characteristics, macrophyte diversity and their economic prospect in Rajmata Dighi: a wetland in Cooch Behar District, West Bengal, India. NeBIO J 1(3):21–27

    Google Scholar 

  • Greenway M (2007) The role of macrophytes in nutrient removal using constructed wetlands. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, Berlin, pp 331–351

    Chapter  Google Scholar 

  • Gujarathi NP, Haney BJ, Linden JC (2005) Phytoremediation potential of Myriophyllum aquaticum and Pistia stratiotes to modify antibiotic growth promoters, tetracycline, and oxytetracycline, in aqueous wastewater systems. Int J Phytoremediation 7(2):99–112

    Article  CAS  Google Scholar 

  • Guo W, Zhang H, Huo S (2014) Organochlorine pesticides in aquatic hydrophyte tissues and surrounding sediments in Baiyangdian wetland, China. Ecol Eng 67:150–155

    Article  Google Scholar 

  • Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30(3):709–732

    Article  CAS  Google Scholar 

  • Hoang TTT, Tu LTC, Le NP, Dao QP (2013) A preliminary study on the phytoremediation of antibiotic contaminated sediment. Int J Phytoremediation 15(1):65–76

    Article  CAS  Google Scholar 

  • Hreeb KK (2017) Effect of different water temperatures on growth of aquatic plants Salvinia natans and Ceratophyllum demersum. J Coast Life Med 5:13–15

    Article  CAS  Google Scholar 

  • Hrivnák R, Otahelová H, Jarolímek I (2006) Diversity of aquatic macrophytes in relation to environmental factors in the Slatina River (Slovakia). Biologia 61:156–168

    Article  Google Scholar 

  • Huang ZZ, Wang P, Li H, Lin KF, Lu ZY, Guo XJ (2014) Community analysis and metabolic pathway of halophilic bacteria for phenol degradation in saline environment. Int Biodeterior Biodegradation 94:115–120

    Article  CAS  Google Scholar 

  • Jacob J (2013) A review of the accumulation and distribution of persistent organic pollutants in the environment. Int J Biosci Biochem Bioinforma 3(6):657–661

    CAS  Google Scholar 

  • Jha P, Jobby R, Kudale S, Modi N, Dhaneshwar A, Desai N (2013) Biodegradation of phenol using hairy roots of Helianthus annuus L. Int Biodeterior Biodegrad 77:106–113

    Article  CAS  Google Scholar 

  • Juneja A, Ceballos R, Murthy G (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6(9):4607–4638

    Article  CAS  Google Scholar 

  • Kalacheva GS, Zhila NO, Volova TG, Gladyshev MI (2002) The effect of temperature on the lipid composition of the green alga Botryococcus. Microbiology 71(3):286–293

    Article  CAS  Google Scholar 

  • Kamal M, Ghaly AE, Mahmoud N, Cote R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29(8):1029–1039

    Article  CAS  Google Scholar 

  • Keshavarzifard M, Zakaria MP, Keshavarzifard S (2019) Evaluation of polycyclic aromatic hydrocarbons contamination in the sediments of the Johor Strait, Peninsular Malaysia. Polycycl Aromat Comp 39(1):44–59

    Article  CAS  Google Scholar 

  • Keskinkan O, Goksu MZL, Yuceer A, Basibuyuk MFCF, Forster CF (2003) Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process Biochem 39(2):179–183

    Article  CAS  Google Scholar 

  • Khataee AR, Movafeghi A, Torbati S, Lisar SS, Zarei M (2012) Phytoremediation potential of duckweed (Lemna minor L.) in degradation of CI Acid Blue 92: artificial neural network modeling. Ecotoxicol Environ Saf 80:291–298

    Article  CAS  Google Scholar 

  • Khodorova NV, Boitel-Conti M (2013) The role of temperature in the growth and flowering of geophytes. Plan Theory 2(4):699–711

    CAS  Google Scholar 

  • Kumar N, Bauddh K, Barman SC, Singh DP (2012) Accumulation of metals in selected macrophytes grown in mixture of drain water and tannery effluent and their phytoremediation potential. J Environ Biol 33:323–327

    Google Scholar 

  • Lee SY, Ahmad SA, Mustapha SR, Ong-Abdullah J (2017) Ability of Ipomoea aquatica Forssk. To remediate phenol in water and effects of phenol on the Plant’s growth. Pertanika J Sci Technol 25(2):441–452

    Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29(2):173–185

    Article  CAS  Google Scholar 

  • Lin CY, Jo CH (2003) Hydrogen production from sucrose using an anaerobic sequencing batch reactor process. J Chem Technol Biotechnol 78(6):678–684

    Article  CAS  Google Scholar 

  • Lin YL, Li BK (2016) Removal of pharmaceuticals and personal care products by Eichhornia crassipe and Pistia stratiotes. J Taiwan Inst Chem E 58:318–323

    Article  CAS  Google Scholar 

  • Lu X, Kruatrachue M, Pokethitiyook P, Homyok K (2004) Removal of cadmium and zinc by water hyacinth, Eichhornia crassipes. Sci Asia 30(93):103

    Google Scholar 

  • Lu W, Wang C, Yang Z (2009) The preparation of high caloric fuel (HCF) from water hyacinth by deoxy-liquefaction. Bioresour Technol 100(24):6451–6456

    Article  CAS  Google Scholar 

  • Luo GE, Strong PJ, Wang H, Ni W, Shi W (2011) Kinetics of the pyrolytic and hydrothermal decomposition of water hyacinth. Bioresour Technol 102(13):6990–6994

    Article  CAS  Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  CAS  Google Scholar 

  • Machate T, Noll H, Behrens H, Kettrup A (1997) Degradation of phenanthrene and hydraulic characteristics in a constructed wetland. Water Res 31(3):554–560

    Article  CAS  Google Scholar 

  • Maine MA, Suñé NL, Lagger SC (2004) Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes. Water Res 38(6):1494–1501

    Article  CAS  Google Scholar 

  • Malik A (2007) Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ Int 33(1):122–138

    Article  CAS  Google Scholar 

  • Maqbool C, Khan AB (2013) Biomass and carbon content of emergent macrophytes in Lake Manasbal, Kashmir: implications for carbon capture and sequestration. Int J Sci Res Pub 3(2):1–7

    Google Scholar 

  • Marcia de SP (2004) Polychlorinated dibenzo-p-dioxins (PCDD), dibenzofurans (PCDF) and polychlorinated biphenyls (PCB): main sources, environmental behaviour and risk to man and biota. Quim Nova 27(6):934–943

    Google Scholar 

  • Materac M, Sobiecka (2017) The efficiency of macrophytes for heavy metals removal from water. Food Sci Biotechnol 81:35–40

    Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Overview of phytotransformation and control of wastes. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation transformation and control of contaminants. Wiley-Interscience, Hoboken, pp 3–58

    Chapter  Google Scholar 

  • Mercado-Borrayo BM, Cram Heydrich S, Rosas Pérez I, Hernández Quiroz M, Ponce De León Hill C (2015) Organophosphorus and organochlorine pesticides bioaccumulation by Eichhornia crassipes in irrigation canals in an urban agricultural system. Int J Phytoremediation 17(7):701–708

    Article  CAS  Google Scholar 

  • Milovanovic M (2007) Water quality assessment and determination of pollution sources along the Axios/Vardar River, Southeastern Europe. Desalination 213:159–173

    Article  CAS  Google Scholar 

  • Miranda AF, Biswas B, Ramkumar N, Singh R, Kumar J, James A, Roddick F, Lal B, Subudhi S, Bhaskar T, Mouradov A (2016) Aquatic plant Azolla as the universal feedstock for biofuel production. Biotechnol Biofuels 9(1):221

    Article  CAS  Google Scholar 

  • Mishra S, Bharagava RN (2016) Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health C 34(1):1–32

    Article  CAS  Google Scholar 

  • Muradov N, Taha M, Miranda AF, Kadali K, Gujar A, Rochfort S, Stevenson T, Ball AS, Mouradov A (2014) Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production. Biotechnol Biofuels 7(1):30

    Article  CAS  Google Scholar 

  • Muthunarayanan V, Santhiya M, Swabna V, Geetha A (2011) Phytodegradation of textile dyes by water hyacinth (Eichhornia crassipes) from aqueous dye solutions. Int J Environ Sci 1(7):1702

    CAS  Google Scholar 

  • Neha KD, Shukla P, Kumar S, Bauddh K, Tiwari J, Dwivedi N, Barman SC, Singh DP, Kumar N (2017) Metal distribution in the sediments, water and naturally occurring macrophytes in the river Gomti, Lucknow, Uttar Pradesh, India. Curr Sci 113(8):1578–1585

    Article  CAS  Google Scholar 

  • Nejrup LB, Pedersen MF (2008) Effects of salinity and water temperature on the ecological performance of Zostera marina. Aquat Bot 88:239–246

    Article  Google Scholar 

  • Nzengung VA, Jeffers P (2001) Sequestration, phytoreduction, and phytooxidation of halogenated organic chemicals by aquatic and terrestrial plants. Int J Phytoremediation 3(1):13–40

    Article  CAS  Google Scholar 

  • Olette R, Couderchet M, Biagianti S, Eullaffroy P (2008) Toxicity and removal of pesticides by selected aquatic plants. Chemosphere 70(8):1414–1421

    Article  CAS  Google Scholar 

  • Otahelová H, Valachovic M, Hrivnák R (2007) The impact of environmental factors on the distribution pattern of aquatic plants along the Danube River corridor (Slovakia). Limnologica 37:290–302

    Article  Google Scholar 

  • Pal S, Chattopadhyay B, Datta S, Mukhopadhyay SK (2017) Potential of wetland macrophytes to sequester carbon and assessment of seasonal carbon input into the East Kolkata Wetland Ecosystem. Wetlands 37(3):497–512

    Article  Google Scholar 

  • Patel SI, Patel NG (2015) Production of bioethanol using water hyacinth, an aquatic weed, as a substrate. J Environ Soc Sci 2(1):108

    Google Scholar 

  • Pereira RG, de Jesus V (2011) Production and characterization of biogas obtained from biomass of aquatic plants. Renew Energy Power Qual J 9(1):79–82

    Article  Google Scholar 

  • Pieper DH, Seeger M (2008) Bacterial metabolism of polychlorinated biphenyls. J Mol Microbiol Biotechnol 15:121–138

    Article  CAS  Google Scholar 

  • Prasertsup P, Ariyakanon N (2011) Removal of chlorpyrifos by water lettuce (Pistia stratiotes L.) and duckweed (Lemna minor L.). Int J Phytoremediation 13(4):383–395

    Article  Google Scholar 

  • Rai PK (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol 39:697–753

    Article  CAS  Google Scholar 

  • Randive V, Belhekar S, Paigude S (2015) Production of bioethanol from Eichhornia crassipes (Water Hyacinth). Int J Curr Microbiol Appl Sci 2:399–406

    Google Scholar 

  • Ratnakar A, Shankar S, Shikha (2016) An overview of biodegradation of organic pollutants. Int J Sci Innov Res 4(1):73–91

    Google Scholar 

  • Reddy KR, Delaune RD (2008) Biogeochemistry of wetlands. Taylor & Francis, CRC Press, Baton Rouge, pp 119–134

    Book  Google Scholar 

  • Reinhold D, Vishwanathan S, Park JJ (2010) Assessment of plant-driven removal of emerging organic pollutants by duckweed. Chemosphere 80(7):687–692

    Article  CAS  Google Scholar 

  • Rezania S, Ponraj M, Talaiekhozani A, Mohamad SE, Din MFM, Taib SM, Sabbagh F, Sairan FM (2015) Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manag 163:125–133

    Article  CAS  Google Scholar 

  • Rezania S, Taib SM, Din MFM, Dahalan FA, Kamyab H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599

    Article  CAS  Google Scholar 

  • Riaz G, Tabinda AB, Iqbal S, Yasar A, Abbas M, Khan AM, Mahfooz Y, Baqar M (2017) Phytoremediation of organochlorine and pyrethroid pesticides by aquatic macrophytes and algae in freshwater systems. Int J Phytoremediation 19(10):894–898

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77(3):247–255

    Article  CAS  Google Scholar 

  • Rodríguez-Espinosa PF, Mendoza-Pérez JA, Tabla-Hernandez J, Martínez-Tavera E, Monroy-Mendieta MM (2018) Biodegradation and kinetics of organic compounds and heavy metals in an artificial wetland system (AWS) by using water hyacinths as a biological filter. Int J Phytoremediation 20(1):35–43

    Article  CAS  Google Scholar 

  • Russell K (2005) The use and effectiveness of phytoremediation to treat persistent organic pollutants. US Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation and Field Services Division, Washington, DC, p 12

    Google Scholar 

  • Santos LO, Silva FF, Santos LC, Carregosa IS, Wisniewski A Jr (2018) Potential bio-oil production from invasive aquatic plants by microscale pyrolysis studies. J Brazil Chem Soc 29(1):151–158

    CAS  Google Scholar 

  • Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches. CRC Press, Taylor & Francis, Boca Raton. ISBN 9781138628892

    Google Scholar 

  • Saxena G, Chandra R, Bharagava RN (2017) Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Rev Environ Contam Toxicol 240:31–69

    CAS  Google Scholar 

  • Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN (2019) Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues and future prospects. Rev Environ Contam Toxicol 249:71–131

    Google Scholar 

  • Scarlett P, O’Hare M (2006) Community structure of in-stream bryophytes in English and Welsh rivers. Hydrobiologia 553:143–152

    Article  Google Scholar 

  • Shah M, Hashmi HN, Ali A, Ghumman AR (2014) Performance assessment of aquatic macrophytes for treatment of municipal wastewater. J Environ Health Sci Eng 12(1):106

    Article  CAS  Google Scholar 

  • Singh BK (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7(2):156–164

    Article  CAS  Google Scholar 

  • Sood A, Uniyal PL, Prasanna R, Ahluwalia AS (2012) Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41(2):122–137

    Article  CAS  Google Scholar 

  • Suren AM, Smart GM, Smith RA, Brown SL (2000) Drag coefficients of stream bryophytes: experimental determinations and ecological significance. Freshw Biol 45(3):309–317

    Article  Google Scholar 

  • Susarla S, Bacchus ST, Wolfe NL, McCutcheon SC (1999) Phytotransformation of perchlorate and identification of metabolic products in Myriophyllum aquaticum. Int J Phytoremediation 1(1):97–107

    Article  CAS  Google Scholar 

  • Sweta BK, Singh R, Singh RP (2015) The suitability of Trapa natans for phytoremediation of inorganic contaminants from the aquatic ecosystems. Ecol Eng 83:39–42

    Article  Google Scholar 

  • Thomas SC, Martin AR (2012) C content of tree tissues: a synthesis. Forests 3(2):332–352

    Article  Google Scholar 

  • Thomaz SM, Esteves FA, Murphy KJ, Dos Santos AM, Caliman A, Guariento RD (2009) Aquatic macrophytes in the tropics: ecology of populations and communities, impacts of invasions and human use. Trop Biol Conserv Manage 4:27–60

    Google Scholar 

  • Tiwari J, Ankit S, Kumar S, Korstad J, Bauddh K (2019) Ecorestoration of polluted aquatic ecosystems through rhizofiltration. In: Pandey VC, Bauddh K (eds) Phytomanagement of polluted sites: market opportunities in sustainable phytoremediation. Elsevier, Amsterdam, pp 179–201

    Chapter  Google Scholar 

  • Torbati S (2015) Feasibility and assessment of the phytoremediation potential of duckweed for triarylmethane dye degradation with the emphasis on some physiological responses and effect of operational parameters. Turk J Biol 39(3):438–446

    Article  CAS  Google Scholar 

  • Török A, Buta E, Indolean C, Tonk S, Silaghi-Dumitrescu L, Majdik C (2015) Biological removal of triphenylmethane dyes from aqueous solution by Lemna minor. Acta Chim Slov 62(2):452–461

    Article  CAS  Google Scholar 

  • Turnbull MH, Whitehead D, Tissue DT, Schuster WS, Brown KJ, Griffin KL (2001) Responses of leaf respiration to temperature and leaf characteristics in three deciduous tree species vary with site water availability. Tree Physiol 21(9):571–578

    Article  CAS  Google Scholar 

  • Victor KK, Séka Y, Norbert KK, Sanogo TA, Celestin AB (2016) Phytoremediation of wastewater toxicity using water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes). Int J Phytoremediation 18(10):949–955

    Article  CAS  Google Scholar 

  • Villamagna AM, Murphy BR (2010) Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshw Biol 55(2):282–298

    Article  Google Scholar 

  • Wang Q, Zhang W, Li C, Xiao B (2012) Phytoremediation of atrazine by three emergent hydrophytes in a hydroponic system. Water Sci Technol 66(6):1282–1288

    Article  CAS  Google Scholar 

  • Wang X, Shi L, Lan CQ, Delatolla R, Zhang Z (2013) Potential of water hyacinth for phytoremediation in low temperature environment. Environ Prog Sustain Energy 32(4):976–981

    Article  CAS  Google Scholar 

  • Wang F, Yi X, Qu H, Chen L, Liu D, Wang P, Zhou Z (2017) Enantioselective accumulation, metabolism and phytoremediation of lactofen by aquatic macrophyte Lemna minor. Ecotoxicol Environ Saf 143:186–192

    Article  CAS  Google Scholar 

  • Wilkie AC, Evans JM (2010) Aquatic plants: an opportunity feedstock in the age of bioenergy. Biofuels 1(2):311–321

    Article  CAS  Google Scholar 

  • Xia H, Ma X (2006) Phytoremediation of Ethion by water hyacinth (Eichhornia crassipes) from water. Bioresour Technol 97(8):1050–1054

    Article  CAS  Google Scholar 

  • Xu J, Cui W, Cheng JJ, Stomp AM (2011) Production of high-starch duckweed and its conversion to bioethanol. Biosyst Eng 110(2):67–72

    Article  Google Scholar 

  • Xu XJ, Lai GL, Chi CQ, Zhao JY, Yan YC, Nie Y, Wu XL (2018) Purification of eutrophic water containing chlorpyrifos by aquatic plants and its effects on planktonic bacteria. Chemosphere 193:178–188

    Article  CAS  Google Scholar 

  • Yadav A, Mishra S, Kaithwas G, Raj A, Bharagava RN (2016) Organic pollutants and pathogenic bacteria in tannery wastewater and their removal strategies. Microbes and Environmental Management Studium Press (India) Pvt. Ltd, New Delhi. ISBN: 978-93-80012-83-4

    Google Scholar 

  • Yadav A, Chowdhary P, Kaithwas G, Bharagava RN (2017) Toxic metals in the environment, their threats on ecosystem and bioremediation approaches. In: Das S, Singh HR (eds) Handbook of metal-microbe interaction and bioremediation. CRC Press, Taylor & Francis, Boca Raton, pp 128–141

    Chapter  Google Scholar 

  • Yamasaki T, Yamakawa T, Yamane Y, Koike H, Satoh K, Katoh S (2002) Temperature acclimation of photosynthesis and related changes in photosystem II electron transport in winter wheat. Plant Physiol 128(3):1087–1097

    Article  CAS  Google Scholar 

  • Yurukova L, Kochev K (1994) Heavy metal concentrations in freshwater Macrophytes from the Aldomirovsko Swamp in the Sofia District, Bulgaria. Bull Environ Contam Toxicol 52(4):627–632

    Article  CAS  Google Scholar 

  • Zhang F, Yediler A, Liang X, Kettrup A (2004) Effects of dye additives on the ozonation process and oxidation by-products: a comparative study using hydrolyzed CI Reactive Red 120. Dyes Pigment 60(1):1–7

    Article  CAS  Google Scholar 

  • Zhang DQ, Tan SK, Gersberg RM, Sadreddini S, Zhu J, Tuan NA (2011) Removal of pharmaceutical compounds in tropical constructed wetlands. Ecol Eng 37(3):460–464

    Article  Google Scholar 

  • Zhao L, Zhu C, Gao C, Jiang J, Yang J, Yang S (2011) Phytoremediation of pentachlorophenol-contaminated sediments by aquatic macrophytes. Environ Earth Sci 64(2):581

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors Kuldeep Bauddh and Lala Saha are thankful to the Science and Engineering Research Board (SERB), New Delhi, India, for award of Research Grant EEQ/2017/000476.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Bauddh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ankit et al. (2020). Removal of Organic Pollutants from Contaminated Water Bodies by Using Aquatic Macrophytes Coupled with Bioenergy Production and Carbon Sequestration. In: Bharagava, R. (eds) Emerging Eco-friendly Green Technologies for Wastewater Treatment. Microorganisms for Sustainability, vol 18. Springer, Singapore. https://doi.org/10.1007/978-981-15-1390-9_10

Download citation

Publish with us

Policies and ethics