Skip to main content

Dynamic Image Networks for Human Fall Detection in 360-degree Videos

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1019))

Abstract

Detection of falls of elderly people is a trivial yet an immediate problem due to the growing age of the population. This demands the need for autonomous self care systems for providing a quick assistance. The three basic approaches used for fall detection include non-invasive vision based devices, ambient based devices and wearable devices. The paper tries to improve upon the state-of-art of accuracy to 98% using vision based system. This was achieved through transfer learning by extending the idea of action recognition using dynamic images which is a standard RGB image containing the appearance and dynamics of a whole video sequence. Such information is vital in dealing with applications like human action recognition. Since we are also looking for a cheap and scalable solution, the use of a 360\(^\circ \) camera seems reasonable and reliable. The top view provided by this camera gives a better perspective than any other alternatives by giving an un-obstructive view of the subjects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ambrose, A.F., Paul, G., Hausdorff, J.M.: Risk factors for falls among older adults: a review of the literature. Maturitas 75(1), 51–61 (2013)

    Article  Google Scholar 

  2. Auvinet, E., Multon, F., Saint-Arnaud, A., Rousseau, J., Meunier, J.: Fall detection with multiple cameras: an occlusion-resistant method based on 3-D silhouette vertical distribution. IEEE Trans. Inf. Technol. Biomed. 15(2), 290–300 (2011)

    Article  Google Scholar 

  3. Bilen, H.: Dynamic image nets (2017). https://github.com/hbilen/dynamic-image-nets

  4. Bilen, H.: UCF101 trained models (2017). http://groups.inf.ed.ac.uk/hbilen-data/data/resnext50_dicnn.tar

  5. Bilen, H., Fernando, B., Gavves, E., Vedaldi, A.: Action recognition with dynamic image networks. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2799–2813 (2018)

    Article  Google Scholar 

  6. Charfi, I., Miteran, J., Dubois, J., Atri, M., Tourki, R.: Definition and performance evaluation of a robust SVM based fall detection solution. SITIS 12, 218–224 (2012)

    Google Scholar 

  7. Davis, J., Robertson, M., Ashe, M., Liu-Ambrose, T., Khan, K., Marra, C.: International comparison of cost of falls in older adults living in the community: a systematic review. Osteoporos. Int. 21(8), 1295–1306 (2010)

    Article  Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Diraco, G., Leone, A., Siciliano, P.: An active vision system for fall detection and posture recognition in elderly healthcare. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 1536–1541. European Design and Automation Association (2010)

    Google Scholar 

  10. Gasparrini, S., Cippitelli, E., Spinsante, S., Gambi, E.: A depth-based fall detection system using a kinect® sensor. Sensors 14(2), 2756–2775 (2014)

    Article  Google Scholar 

  11. Harrou, F., Zerrouki, N., Sun, Y., Houacine, A.: A simple strategy for fall events detection. In: 2016 IEEE 14th International Conference on Industrial Informatics (INDIN), pp. 332–336. IEEE (2016)

    Google Scholar 

  12. Harrou, F., Zerrouki, N., Sun, Y., Houacine, A.: Statistical control chart and neural network classification for improving human fall detection. In: 2016 8th International Conference on Modelling, Identification and Control (ICMIC), pp. 1060–1064. IEEE (2016)

    Google Scholar 

  13. Kwolek, B., Kepski, M.: Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Programs Biomed. 117(3), 489–501 (2014)

    Article  Google Scholar 

  14. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  15. Lee, T., Mihailidis, A.: An intelligent emergency response system: preliminary development and testing of automated fall detection. J. Telemed. Telecare 11(4), 194–198 (2005)

    Article  Google Scholar 

  16. Liu, C.L., Lee, C.H., Lin, P.M.: A fall detection system using k-nearest neighbor classifier. Expert Syst. Appl. 37(10), 7174–7181 (2010)

    Article  Google Scholar 

  17. Mastorakis, G., Makris, D.: Fall detection system using kinect’s infrared sensor. J. Real-Time Image Proc. 9(4), 635–646 (2014)

    Article  Google Scholar 

  18. Miaou, S.G., Sung, P.H., Huang, C.Y.: A customized human fall detection system using omni-camera images and personal information. In: 1st Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare, D2H2, pp. 39–42. IEEE (2006)

    Google Scholar 

  19. Mubashir, M., Shao, L., Seed, L.: A survey on fall detection: principles and approaches. Neurocomputing 100, 144–152 (2013)

    Article  Google Scholar 

  20. Planinc, R., Kampel, M.: Introducing the use of depth data for fall detection. Pers. Ubiquit. Comput. 17(6), 1063–1072 (2013)

    Article  Google Scholar 

  21. Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Robust video surveillance for fall detection based on human shape deformation. IEEE Trans. Circuits Syst. Video Technol. 21(5), 611–622 (2011)

    Article  Google Scholar 

  22. Sengto, A., Leauhatong, T.: Human falling detection algorithm using back propagation neural network. In: Biomedical Engineering International Conference (BMEiCON), pp. 1–5. IEEE (2012)

    Google Scholar 

  23. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  24. Vallejo, M., Isaza, C.V., Lopez, J.D.: Artificial neural networks as an alternative to traditional fall detection methods. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1648–1651. IEEE (2013)

    Google Scholar 

  25. Wang, L., Xiong, Y., Wang, Z., Qiao, Y.: Towards good practices for very deep two-stream convnets. arXiv preprint arXiv:1507.02159 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sumeet Saurav , T. N. D. Madhu Kiran , B. Sravan Kumar Reddy , K. Sanjay Srivastav or Sanjay Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saurav, S., Madhu Kiran, T.N.D., Sravan Kumar Reddy, B., Sanjay Srivastav, K., Singh, S., Saini, R. (2019). Dynamic Image Networks for Human Fall Detection in 360-degree Videos. In: Arora, C., Mitra, K. (eds) Computer Vision Applications. WCVA 2018. Communications in Computer and Information Science, vol 1019. Springer, Singapore. https://doi.org/10.1007/978-981-15-1387-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1387-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1386-2

  • Online ISBN: 978-981-15-1387-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics