Skip to main content

Optic Disc Segmentation in Fundus Images Using Anatomical Atlases with Nonrigid Registration

  • Conference paper
  • First Online:
Computer Vision Applications (WCVA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1019))

Included in the following conference series:

Abstract

According to a WHO report, approximately 253 million people live with vision impairment, 36 million of which are blind and 217 million have moderate to severe vision impairment. In a recent estimate, the major causes of blindness are Cataract, Uncorrected refractive index, and Glaucoma. Thus in medical diagnosis, the retinal image analysis is a very vital task for the early detection of eye diseases such as Glaucoma, diabetic retinopathy (DR), Age-macular Degeneration (AMD) etc. Most of these eye diseases, if not diagnosed at an early stage might lead to permanent loss of vision.

A critical element in the computer-aided diagnosis of Digital Fundus images is the automatic detection of the optic disc region. Especially for the Glaucoma case, where cup to disc diameter ratio (CDR) is the most important indicator for detection. In this paper, we present a nonrigid registration based robust optic disc segmentation method using image retrieval based optic disc model maps that detect optic disc boundaries and surpasses the state-of-the-art performances. The proposed method consists of three main stages: (1) a content-based image retrieval from the model maps of OD using Bhattacharyya shape similarity measure, (2) constructing the test image specific anatomical model using the SIFT-flow technique for deformable registration of training masks to the test image OD mask, and (3) extracting the optic disc boundaries using a thresholding approach and smoothen the image by applying morphological operations along with the final ellipse fitting. The proposed work has used three datasets RIM, DRIONS and DRISHTI with 835 images in total. Our average accuracy values for 685 test images is 95.8%. The other performance parameter values are Specificity is 95.54%, Sensitivity is 96.13%, Overlap is 86.46% and Dice metric is 0.924 respectively, which clearly demonstrates the robustness of our optic disc segmentation approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization: Media centre: visual impairment and blindness, pp. 2–5 (2014). http://www.who.int/mediacentre/factsheets/fs282/en/

  2. Hoover, A., Goldbaum, M.: Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans. Med. Imaging 22(8), 951–958 (2003)

    Article  Google Scholar 

  3. Lowell, J., et al.: Optic nerve head segmentation. IEEE Trans. Med. Imaging 23(2), 256–264 (2004)

    Article  Google Scholar 

  4. Kumar, V., Sinha, N.: Automatic optic disc segmentation using maximum intensity variation. In: IEEE 2013 Tencon - Spring, TENCON Spring 2013 - Conference Proceedings, pp. 29–33 (2013)

    Google Scholar 

  5. Sharma, A., Agrawal, M., Lall, B.: Optic disc detection using vessel characteristics and disc features. In: 2017 Twenty-Third National Conference on Communications (NCC), Chennai, pp. 1–6 (2017). https://doi.org/10.1109/NCC.2017.8077135

  6. Yin, F., et al.: Automated segmentation of optic disc and optic cup in fundus images for glaucoma diagnosis. In: Proceedings of the Symposium on Computer-Based Medical Systems (2012)

    Google Scholar 

  7. Wong, D.K., et al.: Level-set based automatic cup-to-disc ratio determination using retinal fundus images in ARGALI. In: Processings Conference on IEEE Engineering in Medicine and Biology Society, vol. 2008, no. 2, pp. 2266–2269 (2008)

    Google Scholar 

  8. Gopalakrishnan, A., Almazroa, A., Raahemifar, K., Lakshminarayanan, V.: Optic disc segmentation using circular hough transform and curve fitting, vol. 1 (2015)

    Google Scholar 

  9. Lu, S.: Accurate and efficient optic disk detection and segmentation by a circular transformation. IEEE Trans. Med. Imaging 30(12), 2126–2133 (2011)

    Article  Google Scholar 

  10. Airouche, M., Bentabet, L., Zelmat, M.: Image segmentation using active contour model and level set method applied to detect oil spills. In: Proceedings of the World Congress on Engineering, vol. 1, no. 1, pp. 1–3 (2009)

    Google Scholar 

  11. Sevastopolsky, A.: Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network. Pattern Recogn. Image Anal. 27(3), 618–624 (2017)

    Article  Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Sivaswamy, J., Krishnadas, S., Joshi, G.D., Jain, M., Tabish, A.U.S.: Drishti-GS: retinal image dataset for optic nerve head (ONH) segmentation. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 53–56. IEEE (2014)

    Google Scholar 

  14. Vision 2020: The Right to Sight, IABP, Global-facts. http://www.iapb.org/vision-2020/what-is-avoidable-blindness/glaucoma

  15. Lim, G., Cheng, Y., Hsu, W., Lee, M.L.: Integrated optic disc and cup segmentation with deep learning. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 162–169. IEEE (2015)

    Google Scholar 

  16. Sivaswamy, J., et al.: A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis. JSM Biomed. Imaging Data Pap. 2(1), 1004 (2015)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. Computer Vision and Pattern Recognition (cs.CV), MICCAI (2015). arXiv:1505.04597 [cs.CV]

    Google Scholar 

  18. Abdel-Ghafar, R.A., Morris, T.: Progress towards automated detection and characterization of the optic disc in glaucoma and diabetic retinopathy. Med. Inform. Internet Med. 32(1), 19–25 (2007). https://doi.org/10.1080/14639230601095865

    Article  Google Scholar 

  19. Welfer, D., Scharcanski, J., Kitamura, C.M., Dal Pizzol, M.M., Marinho, D.R.: Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach. Comput. Biol. Med. 40(2), 124–137 (2010)

    Article  Google Scholar 

  20. Maninis, K.-K., Pont-Tuset, J., Arbeláez, P., Van Gool, L.: Deep retinal image understanding. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 140–148. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_17

    Chapter  Google Scholar 

  21. Zilly, J., Buhmann, J.M., Mahapatra, D.: Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput. Med. Imaging Graph. 55, 28–41 (2017)

    Article  Google Scholar 

  22. Walter, T., Klein, J.-C., Massin, P., Erginay, A.: A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imaging 21, 1236–1243 (2002). https://doi.org/10.1109/TMI.2002.806290

    Article  Google Scholar 

  23. Morales, S., Naranjo, V., Angulo, J., Alcañiz, M.: Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans. Med. Imaging 32, 786–796 (2013). https://doi.org/10.1109/TMI.2013.2238244

    Article  Google Scholar 

  24. Abdullah, M., Fraz, M.M., Barman, S.A.: Localization and segmentation of optic disc in retinal images using circular hough transform and grow-cut algorithm. PeerJ 4, e2003 (2006). Ed. Henkjan Huisman

    Article  Google Scholar 

  25. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  26. Satpathy, A., Jiang, X., Eng, H.: Extended histogram of gradients feature for human detection. In: 2010 IEEE International Conference on Image Processing, Hong Kong, pp. 3473–3476 (2010). https://doi.org/10.1109/ICIP.2010.5650070

  27. Liu, C., Yuen, J., Torralba, A.: SIFT Flow: dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 978–994 (2011). https://doi.org/10.1109/TPAMI.2010.147

    Article  Google Scholar 

  28. Chung, J.K., Kannappan, P.L., Ng, C.T., Sahoo, P.K.: Measures of distance between probability distributions. J. Math. Anal. Appl. 138(1), 280–292 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ambika Sharma , Monika Aggarwal , Sumantra Dutta Roy , Vivek Gupta , Praveen Vashist or Talvir Sidhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, A., Aggarwal, M., Roy, S.D., Gupta, V., Vashist, P., Sidhu, T. (2019). Optic Disc Segmentation in Fundus Images Using Anatomical Atlases with Nonrigid Registration. In: Arora, C., Mitra, K. (eds) Computer Vision Applications. WCVA 2018. Communications in Computer and Information Science, vol 1019. Springer, Singapore. https://doi.org/10.1007/978-981-15-1387-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1387-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1386-2

  • Online ISBN: 978-981-15-1387-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics