About the Temporal Logic of the Lexicographic Products of Unbounded Dense Linear Orders: A New Study of Its Computability

Conference paper
Part of the Logic in Asia: Studia Logica Library book series (LIAA)


This article considers the temporal logic of the lexicographic products of unbounded dense linear orders and provides via mosaics a new proof of the membership in NP of the satisfiability problem it gives rise to.


Linear temporal logic Lexicographic product Satisfiability problem Decidability Complexity Mosaic method Decision procedure 



The author makes a point of thanking his colleagues of the Institut de recherche en informatique de Toulouse as well as the participants of the 8th International Workshop on Logic and Cognition who, by their comments and their suggestions, contributed to the development of the present paper. We also make a point of thanking the referees for their feedback.


  1. Balbiani, P. 2008. Time representation and temporal reasoning from the perspective of non-standard analysis. In Eleventh International Conference on Principles of Knowledge Representation and Reasoning. AAAI ed. G. Brewka, and J. Lang, 695–704.Google Scholar
  2. Balbiani, P. 2009. Axiomatization and completeness of lexicographic products of modal logics. In Frontiers of Combining Systems, ed. S. Ghilardi, and R. Sebastiani, 165–180. Berlin: Springer.Google Scholar
  3. Balbiani, P. 2010. Axiomatizing the temporal logic defined over the class of all lexicographic products of dense linear orders without endpoints. In Temporal Representation and Reasoning, ed. N. Markey, and J. Wijsen, 19–26. IEEE.Google Scholar
  4. Balbiani, P., and S. Mikulás. 2013. Decidability and complexity via mosaics of the temporal logic of the lexicographic products of unbounded dense linear orders. In Frontiers of Combining Systems, ed. P. Fontaine, C. Ringeissen, and R. Schmidt, 151–164. Berlin: Springer.CrossRefGoogle Scholar
  5. Balbiani, P., and I. Shapirovsky. 2019. Complete axiomatizations of lexicographic sums and products of modal logics. In preparation. Google Scholar
  6. Bull, R. 1966. That all normal extensions of \(S4.3\) have the finite model property. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 12: 314–344.CrossRefGoogle Scholar
  7. Caleiro, C., L. Viganò, and M. Volpe. 2013. On the mosaic method for many-dimensional modal logics: a case study combining tense and modal operators. Logica Universalis 7: 33–69.CrossRefGoogle Scholar
  8. Euzenat, J., and A. Montanari. 2005. Time granularity. In Handbook of Temporal Reasoning in Artificial Intelligence, ed. M. Fisher, D. Gabbay, and L. Vila, 59–118. Amsterdam: Elsevier.Google Scholar
  9. Fine, K. 1971. The logics containing \(S4.3\). Zeitschrift für mathematische Logik und Grundlagen der Mathematik 17: 371–376.CrossRefGoogle Scholar
  10. Gabbay, D., and V. Shehtman. 1998. Products of modal logics, part 1. Logic Journal of the IGPL 6: 73–146.CrossRefGoogle Scholar
  11. Gabbay, D., A. Pnueli, S. Shelah, and J. Stavi. 1980. On the temporal analysis of fairness. In Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 163–173. New York: ACM.Google Scholar
  12. Gabbay, D., A. Kurucz, F. Wolter, and M. Zakharyaschev. 2003. Many-Dimensional Modal Logics: Theory and Applications. Amsterdam: Elsevier.Google Scholar
  13. Gagné, J.-R., and J. Plaice. 1996. A nonstandard temporal deductive database system. Journal of Symbolic Computation 22: 649–664.CrossRefGoogle Scholar
  14. Kurucz, A. 2007. Combining modal logics. In Handbook of Modal Logic, ed. P. Blackburn, J. van Benthem, and F. Wolter, 869–924. Amsterdam: Elsevier.Google Scholar
  15. Marx, M., and Y. Venema. 2007. Local variations on a loose theme: Modal logic and decidability. In Finite Model Theory and Its Applications, ed. E. Grädel, P. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Vardi, Y. Venema, and S. Weinstein, 371–429. Berlin: Springer.Google Scholar
  16. Marx, M., S. Mikulás, and M. Reynolds. 2000. The mosaic method for temporal logics. In Automated Reasoning with Analytic Tableaux and Related Methods, ed. R. Dyckhoff, 324–340. Berlin: Springer.Google Scholar
  17. Nakamura, K., and A. Fusaoka. 2007. Reasoning about hybrid systems based on a nonstandard model. In AI 2007: Advances in Artificial Intelligence, ed. M. Orgun, and J. Thornton, 749–754. Berlin: Springer.Google Scholar
  18. Reynolds, M. 1997. A decidable temporal logic of parallelism. Notre Dame Journal of Formal Logic 38: 419–436.CrossRefGoogle Scholar
  19. Reynolds, M., and M. Zakharyaschev. 2001. On the products of linear modal logics. Journal of Logic and Compution 11: 909–931.CrossRefGoogle Scholar
  20. Van Benthem, J. 1991. The Logic of Time. Dordrecht: Kluwer.CrossRefGoogle Scholar
  21. Zakharyaschev, M., and A. Alekseev. 1995. All finitely axiomatizable normal extensions of \(K4.3\) are decidable. Mathematical Logic Quarterly 41: 15–23.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Institut de recherche en informatique de ToulouseCNRS — Toulouse UniversityToulouseFrance

Personalised recommendations