Hyperstates of Involutive MTL-Algebras that Satisfy \((2x)^2=2(x^2)\)

Conference paper
Part of the Logic in Asia: Studia Logica Library book series (LIAA)


States of MV-algebras have been the object of intensive study and attempts of generalizations. The aim of this contribution is to provide a preliminary investigation for states of prelinear semihoops and hyperstates of algebras in the variety generated by perfect and involutive MTL-algebras (IBP\(_0\)-algebras for short). Grounding on a recent result showing that IBP\(_0\)-algebras can be constructed from a Boolean algebra, a prelinear semihoop and a suitably defined operator between them, our first investigation on states of prelinear semihoops will support and justify the notion of hyperstate for IBP\(_0\)-algebras and will actually show that each such map can be represented by a probability measure on its Boolean skeleton, and a state on a suitably defined abelian \(\ell \)-group.


IBP\(_0\)-algebras Abelian \(\ell \)-groups Prelinear semihoop States of prelinear semihoop Hyperstates 


  1. Aguzzoli, S., T. Flaminio, and S. Ugolini. Equivalences between subcategories of MTL-algebras via Boolean algebras and prelinear semihoops. Journal of Logic and Computation. (in print).CrossRefGoogle Scholar
  2. Birkhoff, G. 1967. Lattice theory, 3rd ed., vol. XXV. Colloquium Publications, American Mathematical Society.Google Scholar
  3. Cignoli, R., I.M.L. D’Ottaviano, and D. Mundici. 2000. Algebraic foundations of many-valued reasoning. Kluwer.Google Scholar
  4. Cignoli, R., and A. Torrens. 2006. Free algebras in varieties of glivenko MTL-algebras satisfying the equation \(2(x^2)=(2x)^2\). Studia Logica 83: 157–181.CrossRefGoogle Scholar
  5. Diaconescu, D., A. Ferraioli, T. Flaminio, and B. Gerla. 2014a. Exploring infinitesimal events through MV-algebras and non-Archimedean states. In Proceedings of IPMU 2014, vol. 443, ed. A. Laurent, et al., 385–394, Part II, CCIS.CrossRefGoogle Scholar
  6. Diaconescu, D., T. Flaminio, and I. Leuştean. 2014. Lexicographic MV-algebras and lexicographic states. Fuzzy Sets and Systems 244: 63–85.CrossRefGoogle Scholar
  7. Di Nola, A., G. Georgescu, and I. Leuştean. 2000. States on perfect MV-algebras. In Discovering the world with fuzzy logic, ed. V. Novak, I. Perfilieva, , vol. 57, 105–125, Studies in Fuzziness and Soft Computing, Heidelberg: Physica.Google Scholar
  8. Di Nola, A., and A. Lettieri. 1994. Perfect MV-algebras are categorically equivalent to Abelian \(\ell \)-groups. Studia Logica 53 (3): 417–432.CrossRefGoogle Scholar
  9. Esteva, F., L. Godo, P. Hájek, and F. Montagna. 2003. Hoops and fuzzy logic. Journal of Logic and Computation 13 (4): 532–555.CrossRefGoogle Scholar
  10. Flaminio, T., and T. Kroupa. 2015. States of MV-algebras. In Handbook of mathematical fuzzy logic, ed. P. Cintula, C. Fermüller and C. Noguera, vol. III. London: Studies in Logic, Mathematical Logic and Foundations, College Publications.Google Scholar
  11. Glass, A., and W. Holland. 1989. Lattice-ordered groups: Advances and techniques, vol. 48. Springer.Google Scholar
  12. Goodearl, K.R. 1986. Partially ordered Abelian group with interpolation, vol. 20. AMS Mathematical Survey and Monographs.Google Scholar
  13. Hájek, P. 1998. Metamathematics of fuzzy logics. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  14. He, P., B. Zhao, and X. Xin. 2017. States and internal states on semihoops. Soft Computing 21 (11): 2941–2957.CrossRefGoogle Scholar
  15. Kroupa, T. 2006. Every state on semisimple MV-algebra is integral. Fuzzy Sets and Systems 157 (20): 2771–2787.CrossRefGoogle Scholar
  16. Mundici, D. 1986. Interpretation of ACF*-algebras in Łukasiewicz sentential calculus. Journal of Functional Analysis 65: 15–63.CrossRefGoogle Scholar
  17. Mundici, D. 1995. Averaging the Truth-value in Łukasiewicz Logic. Studia Logica 55 (1): 113–127.CrossRefGoogle Scholar
  18. Mundici, D. 2011. Advanced Łukasiewicz calculus and MV-algebras. In Trends in Logic, vol. 35. Springer.Google Scholar
  19. Noguera, C., F. Esteva, and J. Gispert. 2005. Perfect and bipartite IMTL-algebras and disconnected rotations of prelinear semihoops. Archive for Mathematical Logic 44: 869–886.CrossRefGoogle Scholar
  20. Panti, G. 2009. Invariant measures on free MV-algebras. Communications in Algebra 36 (8): 2849–2861.CrossRefGoogle Scholar
  21. Weibel, C.A. 2013. The K-book: an introduction to algebraic K-theory. In Graduate Studies in Mathematics, vol. 145. AMS.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.IIIA - CSIC, Campus de la Universidad Autònoma de Barcelona S/nBellaterraSpain
  2. 2.Department of Computer ScienceUniversity of PisaPisaItaly

Personalised recommendations