Skip to main content

Heterogeneous Photocatalysis for Indoor Air Purification: Recent Advances in Technology from Material to Reactor Modeling

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 60))

Abstract

Heterogeneous photocatalytic oxidation (PCO) has attracted much attention in indoor air-purification applications. Recently, researches focus on developing novel photocatalyst based filters for integrating with the heating, ventilation, and air conditioning (HVAC) systems as well as portable air purifiers. A comprehensive knowledge on factors influencing the indoor volatile organic compounds (VOCs) degradation has been established both in bench-scale and pilot-scale experiments. This paper reviews the current status of PCO material technologies, coating methods, performance test methods, and modeling for real-world indoor air-purification application. Due attention to the basic principle of PCO and the effect of operating parameters is provided, followed by a discussion on the modes of PCO application for buildings. The review also concentrates on the practical limitations in scaling-up PCO air purifiers for large-scale applications. Some recommendations for the future research on improving material selection and reactor design to minimize by-product generation and to promote commercialization are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yu BF, Hu ZB, Liu M, Yang HL, Kong QX, Liu YH (2009) Review of research on air-conditioning systems and indoor air quality control for human health. Int J Refrig 32:3–20. https://doi.org/10.1016/j.ijrefrig.2008.05.004

    Article  Google Scholar 

  2. Davidson JH, McKinney PJ (1998) Chemical vapor deposition in the corona discharge of electrostatic air cleaners. Aerosol Sci Technol 29:102–110. https://doi.org/10.1080/02786829808965555

    Article  Google Scholar 

  3. Harper M (2000) Sorbent trapping of volatile organic compounds from air. J Chromatogr A 885:129–151. https://doi.org/10.1016/S0021-9673(00)00363-0

    Article  Google Scholar 

  4. Waring MS, Siegel JA (2011) The effect of an ion generator on indoor air quality in a residential room. Indoor Air 21:267–276. https://doi.org/10.1111/j.1600-0668.2010.00696.x

    Article  Google Scholar 

  5. Sidheswaran MA, Destaillats H, Sullivan DP, Cohn S, Fisk WJ (2012) Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters. Build Environ 47:357–367. https://doi.org/10.1016/j.buildenv.2011.07.002

    Article  Google Scholar 

  6. Ho CC, Kang F, Chang GM, You SJ, Wang YF (2019) Application of recycled lanthanum-doped TiO2 immobilized on commercial air filter for visible-light photocatalytic degradation of acetone and NO. Appl Surf Sci 465:31–40. https://doi.org/10.1016/j.apsusc.2018.09.136

    Article  Google Scholar 

  7. Farhanian D, Haghighat F, Lee CS, Lakdawala N (2013) Impact of design parameters on the performance of ultraviolet photocatalytic oxidation air cleaner. Build Environ 66:148–157. https://doi.org/10.1016/j.buildenv.2013.04.010

    Article  Google Scholar 

  8. Zhong L, Haghighat F (2018) Modeling of by-products from photocatalytic oxidation (PCO) indoor air purifiers: a case study of ethanol. Build Environ 144:427–436. https://doi.org/10.1016/j.buildenv.2018.08.048

    Article  Google Scholar 

  9. Farhanian D, Haghighat F (2014) Photocatalytic oxidation air cleaner: identification and quantification of by-products. Build Environ 72:34–43. https://doi.org/10.1016/j.buildenv.2013.10.014

    Article  Google Scholar 

  10. Shayegan Z, Haghighat F, Lee C (2019) Photocatalytic oxidation of volatile organic compounds for indoor environment applications: three different scaled setups. Chem Eng J 357:533–546. https://doi.org/10.1016/j.cej.2018.09.167

    Article  Google Scholar 

  11. Wang S, Ang HM, Tade MO (2007) Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environ Int 33:694–705. https://doi.org/10.1016/j.envint.2007.02.011

    Article  Google Scholar 

  12. Coelho LL, Estrella AS, Hotza D, Li Puma G, Moreira RDFPM, de Amorim SM (2018) Modulating the photocatalytic activity of TiO2 (P25) with lanthanum and graphene oxide. J Photochem Photobiol A Chem 372:1–10. https://doi.org/10.1016/j.jphotochem.2018.11.048

  13. Shayegan Z, Lee CS, Haghighat F (2018) TiO2 photocatalyst for removal of volatile organic compounds in gas phase—a review. Chem Eng J 334:2408–2439. https://doi.org/10.1016/j.cej.2017.09.153

    Article  Google Scholar 

  14. Pichat P (2019) A brief survey of the practicality of using photocatalysis to purify the ambient air (indoors or outdoors) or air effluents. Appl Catal B Environ 245:770–776. https://doi.org/10.1016/j.apcatb.2018.12.027

    Article  Google Scholar 

  15. Chen J, sun Poon C (2009) Photocatalytic construction and building materials: from fundamentals to applications. Build Environ 44:1899–1906. https://doi.org/10.1016/j.buildenv.2009.01.002

  16. Yang L, Cai A, Luo C, Liu Z, Shangguan W, Xi T (2009) Performance analysis of a novel TiO2-coated foam-nickel PCO air purifier in HVAC systems. Sep Purif Technol 68:232–237. https://doi.org/10.1016/j.seppur.2009.05.008

    Article  Google Scholar 

  17. Luenloi T, Chalermsinsuwan B, Sreethawong T, Hinchiranan N (2011) Photodegradation of phenol catalyzed by TiO2 coated on acrylic sheets: kinetics and factorial design analysis. Desalination 274:192–199. https://doi.org/10.1016/j.desal.2011.02.011

    Article  Google Scholar 

  18. Li X, Yu J, Jaroniec M (2016) Hierarchical photocatalysts. Chem Soc Rev 45:2603–2636. https://doi.org/10.1039/c5cs00838g

    Article  Google Scholar 

  19. Verbruggen SW (2015) TiO2 photocatalysis for the degradation of pollutants in gas phase: from morphological design to plasmonic enhancement. J Photochem Photobiol C Photochem Rev 24:64–82. https://doi.org/10.1016/j.jphotochemrev.2015.07.001

    Article  Google Scholar 

  20. Monteiro RAR, Miranda SM, Rodrigues-Silva C, Faria JL, Silva AMT, Boaventura RAR, Vilar VJP (2015) Gas phase oxidation of n-decane and PCE by photocatalysis using an annular photoreactor packed with a monolithic catalytic bed coated with P25 and PC500. Appl Catal B Environ 165:306–315. https://doi.org/10.1016/j.apcatb.2014.10.026

    Article  Google Scholar 

  21. Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J Catal 203:82–86. https://doi.org/10.1006/jcat.2001.3316

    Article  Google Scholar 

  22. Thevenet F, Guaïtella O, Herrmann JM, Rousseau A, Guillard C (2005) Photocatalytic degradation of acetylene over various titanium dioxide-based photocatalysts. Appl Catal B Environ 61:58–68. https://doi.org/10.1016/j.apcatb.2005.03.015

    Article  Google Scholar 

  23. Alonso-Tellez A, Masson R, Robert D, Keller N, Keller V (2012) Comparison of Hombikat UV100 and P25 TiO2 performance in gas-phase photocatalytic oxidation reactions. J Photochem Photobiol A Chem 250:58–65. https://doi.org/10.1016/j.jphotochem.2012.10.008

    Article  Google Scholar 

  24. Chovelon J-M, Vildozo D, Ferronato C, Sleiman M (2010) Photocatalytic treatment of indoor air: optimization of 2-propanol removal using a response surface methodology (RSM). Appl Catal B Environ J, 303–310. https://doi.org/10.1016/j.apcatb.2009.11.020

  25. Choi W, Ko JY, Park H, Chung JS (2001) Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone. Appl Catal B Environ 31:209–220. https://doi.org/10.1016/S0926-3373(00)00281-2

    Article  Google Scholar 

  26. Monteiro RAR, Silva AMT, Ângelo JRM, Silva GV, Mendes AM, Boaventura RAR, Vilar VJP (2015) Photocatalytic oxidation of gaseous perchloroethylene over TiO2 based paint. J Photochem Photobiol A Chem 311:41–52. https://doi.org/10.1016/j.jphotochem.2015.06.007

    Article  Google Scholar 

  27. Katsanaki A, Kiriakidis G, Binas VD, Sambani K, Maggos T (2011) Synthesis and photocatalytic activity of Mn-doped TiO2 nanostructured powders under UV and visible light. Appl Catal B Environ 113–114:79–86. https://doi.org/10.1016/j.apcatb.2011.11.021

    Article  Google Scholar 

  28. Tseng HH, Wei MC, Hsiung SF, Chiou CW (2009) Degradation of xylene vapor over Ni-doped TiO2 photocatalysts prepared by polyol-mediated synthesis. Chem Eng J 150:160–167. https://doi.org/10.1016/j.cej.2008.12.015

    Article  Google Scholar 

  29. Banisharif A, Khodadadi AA, Mortazavi Y, Anaraki Firooz A, Beheshtian J, Agah S, Menbari S (2015) Highly active Fe2O3-doped TiO2 photocatalyst for degradation of trichloroethylene in air under UV and visible light irradiation: experimental and computational studies. Appl Catal B Environ 165:209–221. https://doi.org/10.1016/j.apcatb.2014.10.023

  30. Dong F, Wang H, Sen G, Wu Z, Lee SC (2011) Enhanced visible light photocatalytic activity of novel Pt/C-doped TiO2/PtCl4 three-component nanojunction system for degradation of toluene in air. J Hazard Mater 187:509–516. https://doi.org/10.1016/j.jhazmat.2011.01.062

    Article  Google Scholar 

  31. Ren W, Ai Z, Jia F, Zhang L (2007) Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. 69:138–144. https://doi.org/10.1016/j.apcatb.2006.06.015

  32. Kamaei M, Rashedi H, Dastgheib S, Tasharrofi S (2018) Comparing photocatalytic degradation of gaseous ethylbenzene using N-doped and pure TiO2 nano-catalysts coated on glass beads under both UV and visible light irradiation. Catalysts. 8:466. https://doi.org/10.3390/catal8100466

    Article  Google Scholar 

  33. Li D, Haneda H, Hishita S, Ohashi N (2005) Visible-light-driven N-F-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification. Chem Mater 17:2596–2602. https://doi.org/10.1021/cm049099p

  34. Mo J, Zhang Y, Xu Q, Lamson JJ, Zhao R (2009) Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos Environ 43:2229–2246. https://doi.org/10.1016/j.atmosenv.2009.01.034

    Article  Google Scholar 

  35. Yu J, Zhao X, Du J, Chen W (2000) Preparation, microstructure and photocatalytic activity of the porous TiO2 anatase coating by sol-gel processing. https://doi.org/10.1023/a:1008703719929

  36. Rubio J, Oteo JL, Villegas M, Duran P (1997) Characterization and sintering behavior of submicrometer titanium dioxide spherical particles obtained by gas-phase hydrolysis of titanium tetrabutoxide. https://doi.org/10.1023/a:1018579500691

  37. Zeatoun L, Feke D (2005) Characterization of TiO2 smoke prepared using gas‐phase hydrolysis of TiCl4. https://doi.org/10.1002/ppsc.200500947

  38. Liu SX, Chen XY, Chen X (2007) A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. 143:257–263. https://doi.org/10.1016/j.jhazmat.2006.09.026

  39. Martins AC, Cazetta AL, Pezoti O, Souza JRB, Zhang T, Pilau EJ, Asefa T, Almeida VC (2017) Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline. Ceram Int 43:4411–4418. https://doi.org/10.1016/j.ceramint.2016.12.088

    Article  Google Scholar 

  40. Chen J, Li G, Huang Y, Zhang H, Zhao H, An T (2012) Applied catalysis B: environmental optimization synthesis of carbon nanotubes-anatase TiO2 composite photocatalyst by response surface methodology for photocatalytic degradation of gaseous styrene. Applied Catal B Environ 123–124:69–77. https://doi.org/10.1016/j.apcatb.2012.04.020

    Article  Google Scholar 

  41. Ao CH, Lee SC (2003) Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level. Appl Catal B Environ 44:191–205. https://doi.org/10.1016/S0926-3373(03)00054-7

    Article  Google Scholar 

  42. Noorjahan M, Kumari VD, Subrahmanyam M, Boule P (2004) A novel and efficient photocatalyst: TiO2-HZSM-5 combinate thin film. Appl Catal B Environ 47:209–213. https://doi.org/10.1016/j.apcatb.2003.08.004

    Article  Google Scholar 

  43. Krýsa J, Baudys M, Vislocka X, Neumann-Spallart M (2018) Composite photocatalysts based on TiO2–carbon for air pollutant removal: aspects of adsorption. Catal Today. https://doi.org/10.1016/j.cattod.2018.09.027

    Article  Google Scholar 

  44. Zhong L, Lee CS, Haghighat F (2012) Adsorption performance of titanium dioxide (TiO2) coated air filters for volatile organic compounds. J Hazard Mater 243:340–349. https://doi.org/10.1016/j.jhazmat.2012.10.042

    Article  Google Scholar 

  45. Matos J, Garcia A, Chovelon J, Ferronato C (2010) Combination of adsorption on activated carbon and oxidative photocatalysis on TiO2 for gaseous toluene remediation. Open Mater Sci J 4:23–25. https://doi.org/10.2174/1874088X01004020023

    Article  Google Scholar 

  46. Šuligoj A, Štangar UL, Tušar NN (2014) Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate. Chem Pap 68:1265–1272. https://doi.org/10.2478/s11696-014-0553-7

    Article  Google Scholar 

  47. Li M, Lu B, Ke QF, Guo YJ, Guo YP (2017) Synergetic effect between adsorption and photodegradation on nanostructured TiO2/activated carbon fiber felt porous composites for toluene removal. J Hazard Mater 333:88–98. https://doi.org/10.1016/j.jhazmat.2017.03.019

    Article  Google Scholar 

  48. Shi JW, Cui HJ, Chen JW, Fu ML, Xu B, Luo HY, Ye ZL (2012) TiO2/activated carbon fibers photocatalyst: effects of coating procedures on the microstructure, adhesion property, and photocatalytic ability. J Colloid Interface Sci 388:201–208. https://doi.org/10.1016/j.jcis.2012.08.038

    Article  Google Scholar 

  49. Ahmadkhaniha R, Izadpanah F, Rastkari N (2017) Reduced graphene oxide-TiO2 nanocomposite facilitated visible light photodegradation of gaseous toluene. J Environ Prot (Irvine, Calif). 08:591–602. https://doi.org/10.4236/jep.2017.85039

  50. Lu Y, Wang D, Ma C, Yang H (2010) The effect of activated carbon adsorption on the photocatalytic removal of formaldehyde. Build Environ 45:615–621. https://doi.org/10.1016/j.buildenv.2009.07.019

    Article  Google Scholar 

  51. Kim S, Kim M, Lee HY, Yu JS (2017) Visible light-induced photocatalytic degradation of gas-phase acetaldehyde with platinum/reduced titanium oxide-loaded carbon paper. RSC Adv. 7:50693–50700. https://doi.org/10.1039/c7ra10778a

    Article  Google Scholar 

  52. Ouzzine M, Romero-Anaya AJ, Lillo-Ródenas MA, Linares-Solano A (2014) Spherical activated carbon as an enhanced support for TiO2/AC photocatalysts. Carbon 67:104–118. https://doi.org/10.1016/j.carbon.2013.09.069

    Article  Google Scholar 

  53. Mull B, Möhlmann L, Wilke O (2017) Photocatalytic degradation of toluene, butyl acetate and limonene under UV and visible light with titanium dioxide-graphene oxide as photocatalyst. Environments 4:9. https://doi.org/10.3390/environments4010009

    Article  Google Scholar 

  54. Aghighi A, Haghighat F (2015) Evaluation of nano-titanium dioxide (TiO2) catalysts for ultraviolet photocatalytic oxidation air cleaning devices. J Environ Chem Eng 3:1622–1629. https://doi.org/10.1016/j.jece.2015.05.019

    Article  Google Scholar 

  55. Han Z, Chang VWC, Zhang L, Tse MS, Tan OK, Hildemann LM (2012) Preparation of TiO2-coated polyester fiber filter by spray-coating and its photocatalytic degradation of gaseous formaldehyde. Aerosol Air Qual. Res. 12:1327–1335. https://doi.org/10.4209/aaqr.2012.05.0114

    Article  Google Scholar 

  56. Boccaccini AR, Karapappas P, Marijuan JM, Kaya C (2004) Electrophoretic deposition : fundamentals and applications TiO2 coatings on silicon carbide and carbon fiber substrates by electrophoretic deposition. 9:851–859

    Google Scholar 

  57. Sánchez B, Sánchez-Muñoz M, Muñoz-Vicente M, Cobas G, Portela R, Suárez S, González AE, Rodríguez N, Amils R (2012) Photocatalytic elimination of indoor air biological and chemical pollution in realistic conditions. Chemosphere 87:625–630. https://doi.org/10.1016/j.chemosphere.2012.01.050

    Article  Google Scholar 

  58. Ding Z, Hu X, Lu GQ, Yue P-L, Greenfield PF (2000) Novel silica gel supported TiO2 photocatalyst synthesized by CVD method. Langmuir 16:6216–6222. https://doi.org/10.1021/la000119l

    Article  Google Scholar 

  59. Raza N, Kim KH, Agbe H, Kailasa SK, Szulejko JE, Brown RJC (2017) Recent advances in titania-based composites for photocatalytic degradation of indoor volatile organic compounds. Asian J Atmos Environ 11:217–234. https://doi.org/10.5572/ajae.2017.11.4.217

    Article  Google Scholar 

  60. Tian MJ, Liao F, Ke QF, Guo YJ, Guo YP (2017) Synergetic effect of titanium dioxide ultralong nanofibers and activated carbon fibers on adsorption and photodegradation of toluene. Chem Eng J 328:962–976. https://doi.org/10.1016/j.cej.2017.07.109

    Article  Google Scholar 

  61. Lekshmi MV, Shiva Nagendra SM, Maiya MP (2019) Photocatalytic degradation of gaseous toluene using self-assembled air filter based on chitosan/activated carbon/TiO2. Journal of Environmental Chemical Engineering 7(6):103455. https://doi.org/10.1016/j.jece.2019.103455

    Google Scholar 

  62. Héquet V, Raillard C, Debono O, Thévenet F, Locoge N, Le Coq L (2018) Photocatalytic oxidation of VOCs at ppb level using a closed-loop reactor: the mixture effect. Appl Catal B Environ 226:473–486. https://doi.org/10.1016/j.apcatb.2017.12.041

    Article  Google Scholar 

  63. Kolarik B, Wargocki P, Skorek-Osikowska A, Wisthaler A (2010) The effect of a photocatalytic air purifier on indoor air quality quantified using different measuring methods. Build Environ 45:1434–1440. https://doi.org/10.1016/j.buildenv.2009.12.006

    Article  Google Scholar 

  64. Gunschera J, Markewitz D, Bansen B, Salthammer T, Ding H (2016) Portable photocatalytic air cleaners: efficiencies and by-product generation. Environ Sci Pollut Res 23:7482–7493. https://doi.org/10.1007/s11356-015-5992-3

    Article  Google Scholar 

  65. Yu KP, Whei-May Lee G, Huang WM, Wu CC, Lou CI, Yang S (2006) Effectiveness of photocatalytic filter for removing volatile organic compounds in the heating, ventilation, and air conditioning system. J Air Waste Manag Assoc 56:666–674. https://doi.org/10.1080/10473289.2006.10464482

  66. Ramirez AM, Demeestere K, De Belie N, Mäntylä T, Levänen E (2010) Titanium dioxide coated cementitious materials for air purifying purposes: preparation, characterization and toluene removal potential. Build Environ 45:832–838. https://doi.org/10.1016/j.buildenv.2009.09.003

    Article  Google Scholar 

  67. Negishi N, Matsuzawa S, Takeuchi K, Pichat P (2007) Transparent micrometer-thick TiO2 films on SiO2-coated glass prepared by repeated dip-coating/calcination: characteristics and photocatalytic activities for removing acetaldehyde or toluene in air. Chem Mater 19:3808–3814. https://doi.org/10.1021/cm070320i

    Article  Google Scholar 

  68. Lorencik S, Yu QL, Brouwers HJH (2016) Photocatalytic coating for indoor air purification: synergetic effect of photocatalyst dosage and silica modification. 306:942–952. https://doi.org/10.1016/j.cej.2016.07.093

  69. Auvinen J, Wirtanen L (2008) The influence of photocatalytic interior paints on indoor air quality. Atmos Environ 42:4101–4112. https://doi.org/10.1016/j.atmosenv.2008.01.031

    Article  Google Scholar 

  70. Maggos T, Bartzis JG, Liakou M, Gobin C (2007) Photocatalytic degradation of NOx gases using TiO2-containing paint: a real scale study. J Hazard Mater 146:668–673. https://doi.org/10.1016/j.jhazmat.2007.04.079

    Article  Google Scholar 

  71. Kolarik J, Toftum J (2012) The impact of a photocatalytic paint on indoor air pollutants: sensory assessments. Build Environ 57:396–402. https://doi.org/10.1016/j.buildenv.2012.06.010

    Article  Google Scholar 

  72. Mamaghani AH, Haghighat F, Lee CS (2017) Photocatalytic oxidation technology for indoor environment air purification: the state-of-the-art. Appl Catal B Environ 203:247–269. https://doi.org/10.1016/j.apcatb.2016.10.037

    Article  Google Scholar 

  73. Korologos CA, Philippopoulos CJ, Poulopoulos SG (2011) The effect of water presence on the photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase. Atmos Environ 45:7089–7095. https://doi.org/10.1016/j.atmosenv.2011.09.038

    Article  Google Scholar 

  74. Bouazza N, Lillo-Ródenas MA, Linares-Solano A (2008) Photocatalytic activity of TiO2-based materials for the oxidation of propene and benzene at low concentration in presence of humidity. Appl Catal B Environ 84:691–698. https://doi.org/10.1016/j.apcatb.2008.06.002

    Article  Google Scholar 

  75. Mo J, Zhang Y, Xu Q (2013) Effect of water vapor on the by-products and decomposition rate of ppb-level toluene by photocatalytic oxidation. Appl Catal B Environ 132–133:212–218. https://doi.org/10.1016/j.apcatb.2012.12.001

    Article  Google Scholar 

  76. Biard PF, Bouzaza A, Wolbert D (2007) Photocatalytic degradation of two volatile fatty acids in an annular plug-flow reactor; kinetic modeling and contribution of mass transfer rate. Environ Sci Technol 41:2908–2914. https://doi.org/10.1021/es062368n

    Article  Google Scholar 

  77. Sleiman M, Conchon P, Ferronato C, Chovelon JM (2009) Photocatalytic oxidation of toluene at indoor air levels (ppbv): towards a better assessment of conversion, reaction intermediates and mineralization. Appl Catal B Environ 86:159–165. https://doi.org/10.1016/j.apcatb.2008.08.003

    Article  Google Scholar 

  78. Zhu X, Chang D, Li X, Sun Z, Deng X, Zhu A (2015) Inherent rate constants and humidity impact factors of anatase TiO2 film in photocatalytic removal of formaldehyde from air. Chem Eng J 279:897–903. https://doi.org/10.1016/j.cej.2015.05.095

    Article  Google Scholar 

  79. Zhong L, Haghighat F, Lee CS, Lakdawala N (2013) Performance of ultraviolet photocatalytic oxidation for indoor air applications: systematic experimental evaluation. J Hazard Mater 261:130–138. https://doi.org/10.1016/j.jhazmat.2013.07.014

    Article  Google Scholar 

  80. Zhong L, Lee CS, Haghighat F, Bahloul A (2016) Deactivation and ultraviolet C-induced regeneration of photocatalytic oxidation air filters. Sci Technol Built Environ 22:576–585. https://doi.org/10.1080/23744731.2016.1171629

    Article  Google Scholar 

  81. Huang H, Liu G, Zhan Y, Xu Y, Lu H, Huang H (2017) Photocatalytic oxidation of gaseous benzene under VUV irradiation over TiO2/zeolites catalysts. Catal Today 281:649–655. https://doi.org/10.1016/j.cattod.2016.07.005

    Article  Google Scholar 

  82. Taoda H, Fukaya M, Watanabe E, Tanaka K (2009) VOC decomposition by photocatalytic wall paper. Mater Sci Forum 510–511:22–25. https://doi.org/10.4028/www.scientific.net/msf.510-511.22

    Article  Google Scholar 

  83. Chen DH, Ye XJ, Li KY (2005) Oxidation of PCE with a UV LED photocatalytic reactor. Chem Eng Technol 28:95–97. https://doi.org/10.1002/ceat.200407012

    Article  Google Scholar 

  84. Lin L, Chai Y, Zhao B, Wei W, He D, He B, Tang Q (2013) Photocatalytic oxidation for degradation of VOCs. Open J Inorg Chem 3:14–25. https://doi.org/10.4236/ojic.2013.31003

    Article  Google Scholar 

  85. Ao CH, Lee SC (2004) Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level. J Photochem Photobiol A Chem 161:131–140. https://doi.org/10.1016/S1010-6030(03)00276-4

    Article  Google Scholar 

  86. Luo Y, Ollis DF (1996) Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: Kinetic promotion and inhibition, time-dependent catalyst activity. J Catal 163:1–11. https://doi.org/10.1006/jcat.1996.0299

    Article  Google Scholar 

  87. Zhong L, Haghighat F (2015) Photocatalytic air cleaners and materials technologies—abilities and limitations. Build Environ 91:191–203. https://doi.org/10.1016/j.buildenv.2015.01.033

    Article  Google Scholar 

  88. Dumont É, Héquet V (2017) Determination of the Clean Air Delivery Rate (CADR) of photocatalytic oxidation (PCO) purifiers for indoor air pollutants using a closed-loop reactor. Part I: Theoretical considerations, Molecules. 22. https://doi.org/10.3390/molecules22030407

  89. Zhong L, Haghighat F, Lee CS (2013) Ultraviolet photocatalytic oxidation for indoor environment applications: experimental validation of the model. Build Environ 62:155–166. https://doi.org/10.1016/j.buildenv.2013.01.009

    Article  Google Scholar 

  90. Hossain M, Raupp GB, Hay SO, Obee TN (1999) Three-dimensional developing flow model for photocatalytic monolith reactors, 45

    Google Scholar 

  91. Zhong L, Haghighat F (2011) Modeling and validation of a photocatalytic oxidation reactor for indoor environment applications. Chem Eng Sci 66:5945–5954. https://doi.org/10.1016/j.ces.2011.08.017

    Article  Google Scholar 

  92. Imoberdorf GE, Taghipour F, Keshmiri M, Mohseni M (2008) Predictive radiation field modeling for fluidized bed photocatalytic reactors. 63:4228–4238. https://doi.org/10.1016/j.ces.2008.05.022

  93. Puma GL (2007) Radiation field optimization in photocatalytic monolith reactors for air treatment, 53. https://doi.org/10.1002/aic

  94. Verbruggen SW, Keulemans M, van Walsem J, Tytgat T, Lenaerts S, Denys S (2016) CFD modeling of transient adsorption/desorption behavior in a gas phase photocatalytic fiber reactor. Chem Eng J 292:42–50. https://doi.org/10.1016/j.cej.2016.02.014

    Article  Google Scholar 

  95. Roegiers J, van Walsem J, Denys S (2018) CFD- and radiation field modeling of a gas phase photocatalytic multi-tube reactor. Chem Eng J 338:287–299. https://doi.org/10.1016/j.cej.2018.01.047

    Article  Google Scholar 

  96. Raupp GB, Alexiadis A, Hossain M, Changrani R (2001) First-principles modeling, scaling laws and design of structured photocatalytic oxidation reactors for air purification. 69:41–49

    Google Scholar 

  97. Den W, Wang CC (2012) Enhancement of adsorptive chemical filters via titania photocatalysts to remove vapor-phase toluene and isopropanol. Sep Purif Technol 85:101–111. https://doi.org/10.1016/j.seppur.2011.09.054

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Shiva Nagendra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lekshmi, M.V., Shiva Nagendra, S.M., Maiya, M.P. (2020). Heterogeneous Photocatalysis for Indoor Air Purification: Recent Advances in Technology from Material to Reactor Modeling. In: Sharma, A., Goyal, R., Mittal, R. (eds) Indoor Environmental Quality. Lecture Notes in Civil Engineering, vol 60. Springer, Singapore. https://doi.org/10.1007/978-981-15-1334-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1334-3_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1333-6

  • Online ISBN: 978-981-15-1334-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics