Skip to main content

ZnO/Pb(Zr,Ti)O3 Gate Structure Ferroelectric FETs

  • Chapter
  • First Online:
  • 1821 Accesses

Part of the book series: Topics in Applied Physics ((TAP,volume 131))

Abstract

We have developed a ferroelectric-gate field-effect transistor (FeFET) composed of heteroepitaxially stacked oxide materials. A semiconductor film of ZnO, a ferroelectric film of Pb(Zr,Ti)O3 (PZT), and a bottom-gate electrode of SrRuO3 (SRO) are grown on a SrTiO3 substrate. Structural characterization shows a heteroepitaxy of the fabricated ZnO/PZT/SRO/STO structure with a good crystalline quality and absence of an interface reaction layer. When gate voltages applied to the bottom electrode are swept between −10 V and +10 V, the ON/OFF ratio of drain currents is higher than 105. Such a high ratio is preserved even after 3.5 months; the extrapolation of retention behavior predicts a definite memory window over 10 years. We also switched FeFET channel conductance by applying short pulses to a gate electrode and found that the switching of the FeFET is due to domain wall motion in a ferroelectric film. Polarization reversal starts from a region located under source and drain electrodes and travels along the direction of channel length. In addition, domain wall velocity increases as the domain wall gets closer to the source and drain electrodes in the ferroelectric film. Therefore, the FeFET has the merit of high operation speeds at scale. Then, we demonstrate a 60-nm-channel-length FeFET. The drain current ON/OFF ratio was about three orders of magnitude for write pulse widths as narrow as 10 ns. Although the channel length is set at 60 nm, the conductance can be varied continuously by varying the write pulse width.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K. Tanaka, Y. Cho, Actual information storage with a recording density of 4 Tbit/in.(2) in a ferroelectric recording medium. Appl. Phys. Lett. 97, 092901 (2010)

    Google Scholar 

  2. K. Tanaka et al., Scanning nonlinear dielectric microscopy nano-science and technology for next generation high density ferroelectric data storage. Jpn. J. Appl. Phys. 47, 3311–3325 (2008)

    Google Scholar 

  3. W. Shu-Yau, A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor. IEEE Trans. Electron Devices 21, 499–504 (1974)

    Google Scholar 

  4. M. Alexe, Measurement of interface trap states in metal-ferroelectric-silicon heterostructures. Appl. Phys. Lett. 72, 2283–2285 (1998)

    Google Scholar 

  5. G. Hirooka et al., Proposal for a new ferroelectric gate field effect transistor memory based on ferroelectric-insulator interface conduction. Jpn. J. Appl. Phys. Part 1-Regul. Pap. Short Notes Rev. Pap. 43, 2190–2193 (2004)

    Google Scholar 

  6. S. Sakai, R. Ilangovan, Metal-ferroelectric-insulator-semiconductor memory FET with long retention and high endurance. IEEE Electron Device Lett. 25, 369–371 (2004)

    Google Scholar 

  7. E. Tokumitsu et al., Use of ferroelectric gate insulator for thin film transistors with ITO channel. Microelectr. Eng. 80, 305–308 (2005)

    Google Scholar 

  8. K. Takahashi et al., Thirty-day-long data retention in ferroelectric-gate field-effect transistors with HfO2 buffer layers. Jpn. J. Appl. Phys. Part 1-Regul. Pap. Brief Commun. Rev. Pap. 44, 6218–6220 (2005)

    Google Scholar 

  9. M. Takahashi, S. Sakai, Self-aligned-gate metal/ferroelectric/insulator/semiconductor field-effect transistors with long memory retention. Jpn. J. Appl. Phys. Part 2-Lett. Exp. Lett. 44, L800–L802 (2005)

    Google Scholar 

  10. B.Y. Lee et al., Fabrication and characterization of ferroelectric gate field-effect transistor memory based on ferroelectric-insulator interface conduction. Jpn. J. Appl. Phys. Part 1-Regul. Pap. Brief Commun. Rev. Pap. 45, 8608–8610 (2006)

    Google Scholar 

  11. Q.H. Li, S. Sakai, Characterization of Pt/SrBi2Ta2O9/Hf-Al-O/Si field-effect transistors at elevated temperatures. Appl. Phys. Lett. 89 (2006)

    Google Scholar 

  12. H. Ishiwara, Current status of ferroelectric-gate Si transistors and challenge to ferroelectric-gate CNT transistors. Current Appl. Phys. 9, S2–S6 (2009)

    Google Scholar 

  13. S. Yokoyama et al., Dependence of electrical properties of epitaxial Pb(Zr,Ti)O3 thick films on crystal orientation and Zr∕(Zr + Ti) ratio. J. Appl. Phys. 98, 094106 (2005)

    Google Scholar 

  14. Ü. Özgür et al., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Google Scholar 

  15. J.W. Matthews, A.E. Blakeslee, Defects in epitaxial multilayers. I. Misfit dislocations. J. Cryst. Growth, 27, 118 (1974)

    Google Scholar 

  16. Z.K. Tang et al., Self-assembled ZnO nano-crystals and exciton lasing at room temperature. J. Cryst. Growth 287, 169–179 (2006)

    Google Scholar 

  17. E.M.C. Fortunato et al., Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Appl. Phys. Lett. 85, 2541–2543 (2004)

    Google Scholar 

  18. P.F. Carcia et al., Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Appl. Phys. Lett. 82, 1117–1119 (2003)

    Google Scholar 

  19. A. Tsukazaki et al., Quantum hall effect in polar oxide heterostructures. Science 315, 1388–1391 (2007)

    Google Scholar 

  20. N. Tsuda et al., Electronic Conduction in Oxides, 2nd ed. (Shokabo, 1993)

    Google Scholar 

  21. B.L. Zhu et al., Effect of Thickness on the Structure and Properties of ZnO Thin Films Prepared by Pulsed Laser Deposition. Jpn. J. Appl. Phys. 45, 7860 (2006)

    Google Scholar 

  22. E. Bellingeri et al., High mobility in ZnO thin films deposited on perovskite substrates with a low temperature nucleation layer. Appl. Phys. Lett. 86, 012109 (2005)

    Google Scholar 

  23. Y. Ishibashi, Y. Takagi, Note on Ferroelectric Domain Switching. J. Phys. Soc. Jpn, 31, 506 (1971)

    Google Scholar 

  24. J.F. Scott et al., Switching kinetics of lead zirconate titanate submicron thin-film memories. J. Appl. Phys. 64, 787–792 (1988)

    Google Scholar 

  25. T. Tybell et al., Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films. Phys. Rev. Lett. 89, 097601 (2002)

    Google Scholar 

  26. Y.-H. Shin et al., Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature, 449, 881–884 (2007)

    Google Scholar 

  27. E. Tokumitsu et al., Partial switching kinetics of ferroelectric PbZrxTi1-xO3 thin films prepared by sol-gel technique. Jpn. J. Appl. Phys. 33, 5201 (1994)

    Google Scholar 

  28. J.Y. Jo et al., Composition-dependent polarization switching behaviors of (111)-preferred polycrystalline Pb(ZrxT1−x)O3 thin films. Appl. Phys. Lett. 92, 012917-3 (2008)

    Google Scholar 

  29. T. Fukushima et al., Impedance analysis of controlled-polarization-type ferroelectric-gate thin film transistor using resistor–capacitor lumped constant circuit. Jpn. J. Appl. Phys. 50, 04DD16 (2011)

    Google Scholar 

  30. J. Li et al., Ultrafast polarization switching in thin-film ferroelectrics. Appl. Phys. Lett. 84, 1174–1176 (2004)

    Google Scholar 

  31. H. Ishii et al., Ultrafast polarization switching in ferroelectric polymer thin films at extremely high electric fields. Appl. Phys. Express 4, 031501 (2011)

    Google Scholar 

  32. Y. Cho, Ultrahigh-density ferroelectric data storage based on scanning nonlinear dielectric microscopy. Jpn. J. Appl. Phys. 44, 5339 (2005)

    Google Scholar 

  33. H. Tanaka et al., A ferroelectric gate field effect transistor with a ZnO/Pb(Zr,Ti)O3 heterostructure formed on a silicon substrate. Jpn. J. Appl. Phys. 47, 7527–7532 (2008)

    Google Scholar 

  34. Y. Kaneko et al., NOR-type nonvolatile ferroelectric-gate memory cell using composite oxide technology. Jpn. J. Appl. Phys. 48, 09ka19 (2009)

    Google Scholar 

  35. Y. Kaneko et al., A dual-channel ferroelectric-gate field-effect transistor enabling nand-type memory characteristics. IEEE Trans. Electron Devices 58, 1311–1318 (2011)

    Google Scholar 

  36. M. Ueda et al., A neural network circuit using persistent interfacial conducting heterostructures. J. Appl. Phys. 110, 086104-3 (2011)

    Google Scholar 

  37. Y. Nishitani et al., Three-terminal ferroelectric synapse device with concurrent learning function for artificial neural networks. J. Appl. Phys. 111, 124108-6 (2012)

    Google Scholar 

  38. Y. Kaneko et al., Neural network based on a three-terminal ferroelectric memristor to enable on-chip pattern recognition, in 2013 Symposium on VLSI Technology (VLSIT) (2013), pp. T238–T239

    Google Scholar 

  39. Y. Nishitani et al., Dynamic observation of brain-like learning in a ferroelectric synapse device. Jpn. J. Appl. Phys. 52, 04CE06 (2013)

    Google Scholar 

  40. Y. Kaneko et al., Ferroelectric artificial synapses for recognition of a multishaded image. IEEE Trans. Electron Devices 61, 2827–2833 (2014)

    Google Scholar 

  41. Y. Nishitani et al., Supervised learning using spike-timing- dependent plasticity of memristive synapses. IEEE Trans. Neural Netw. Learn. Syst. (accepted)

    Google Scholar 

  42. M. Ueda et al., Battery-less shock-recording device consisting of a piezoelectric sensor and a ferroelectric-gate field-effect transistor. Sens. Actuators A: Phys. 232, 75–83 (2015)

    Google Scholar 

  43. Y. Kato et al., Nonvolatile memory using epitaxially grown composite-oxide-film technology. Jpn. J. Appl. Phys. 47, 2719–2724 (2008)

    Google Scholar 

  44. Y. Kaneko et al., Correlated motion dynamics of electron channels and domain walls in a ferroelectric-gate thin-film transistor consisting of a ZnO/Pb(Zr,Ti)O3 stacked structure. J. Appl. Phys. 110, 084106-7 (2011)

    Google Scholar 

  45. Y. Kaneko et al., A 60 nm channel length ferroelectric-gate field-effect transistor capable of fast switching and multilevel programming. Appl. Phys. Lett. 99, 182902-3 (2011)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Yu Nishitani, Hiroyuki Tanaka, Michihito Ueda, Atsushi Omote, Ayumu Tsujimura, Eiji Fujii, Yoshihisa Kato, Yasuhiro Shimada, Daisuke Ueda, and Eisuke Tokumitsu for valuable discussions and excellent experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Kaneko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaneko, Y. (2020). ZnO/Pb(Zr,Ti)O3 Gate Structure Ferroelectric FETs. In: Park, BE., Ishiwara, H., Okuyama, M., Sakai, S., Yoon, SM. (eds) Ferroelectric-Gate Field Effect Transistor Memories. Topics in Applied Physics, vol 131. Springer, Singapore. https://doi.org/10.1007/978-981-15-1212-4_7

Download citation

Publish with us

Policies and ethics