Skip to main content

Model Organisms for Understanding Peroxisomal Disorders

  • Chapter
  • First Online:
Peroxisomes: Biogenesis, Function, and Role in Human Disease

Abstract

Peroxisomal disorders are congenital human diseases caused by the dysfunction of peroxisomes, which are small vesicular organelles distributed in the cytoplasm. In patients suffering from these disorders, multiple defects manifest in a variety of tissues and organs, such as the brain, spinal cord, peripheral nerves, eyes, kidneys, liver, spleen, and bone. A number of biological metabolites are synthesized and degraded in the peroxisomes, such that the metabolites fluctuate severely in patients with peroxisomal disorders. A link between peroxisomal metabolites and symptoms of peroxisomal disorders has long been suspected; however, we have only limited knowledge about the pathology of this disease in humans due to the rarity of peroxisomal disorders. To overcome this problem, model organisms of peroxisomal disorders were established and studied in detail. These models successfully recapitulate the major human symptoms and have become powerful tools to understand the biological basis of the disease pathology and the development of therapeutic strategies against it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atshaves BP, McIntosh AL, Landrock D, Payne HR, Mackie JT, Maeda N, Ball J, Schroeder F, Kier AB (2007) Effect of SCP-x gene ablation on branched-chain fatty acid metabolism. Am J Physiol Gastrointest Liver Physiol 292:G939–G951

    Article  CAS  PubMed  Google Scholar 

  • Baes M, Gressens P, Baumgart E, Carmeliet P, Casteels M, Fransen M, Evrard P, Fahimi D, Declercq PE, Collen D et al (1997) A mouse model for Zellweger syndrome. Nat Genet 17:49–57

    Article  CAS  PubMed  Google Scholar 

  • Baes M, Huyghe S, Carmeliet P, Declercq PE, Collen D, Mannaerts GP, Van Veldhoven PP (2000) Inactivation of the peroxisomal multifunctional protein-2 in mice impedes the degradation of not only 2-methyl-branched fatty acids and bile acid intermediates but also of very long chain fatty acids. J Biol Chem 275:16329–16336

    Article  CAS  PubMed  Google Scholar 

  • Braverman N, Zhang R, Chen L, Nimmo G, Scheper S, Tran T, Chaudhury R, Moser A, Steinberg S (2010) A Pex7 hypomorphic mouse model for plasmalogen deficiency affecting the lens and skeleton. Mol Genet Metab 99:408–416

    Article  CAS  PubMed  Google Scholar 

  • Brites P, Motley AM, Gressens P, Mooyer PAW, Ploegaert I, Everts V, Evrard P, Carmeliet P, Dewerchin M, Schoonjans L et al (2003) Impaired neuronal migration and endochondral ossification in Pex7 knockout mice: a model for rhizomelic chondrodysplasia punctata. Hum Mol Genet 12:2255–2267

    Article  CAS  PubMed  Google Scholar 

  • Brites P, Mooyer PA, El Mrabet L, Waterham HR, Wanders RJ (2009) Plasmalogens participate in very-long-chain fatty acid-induced pathology. Brain 132:482–492

    Article  PubMed  Google Scholar 

  • Bülow MH, Wingen C, Senyilmaz D, Gosejacob D, Sociale M, Bauer R, Schulze H, Sandhoff K, Teleman AA, Hoch M et al (2018) Unbalanced lipolysis results in lipotoxicity and mitochondrial damage in peroxisome-deficient. Mol Biol Cell 29:396–407

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H, Liu Z, Huang X (2010) Drosophila models of peroxisomal biogenesis disorder: peroxins are required for spermatogenesis and very-long-chain fatty acid metabolism. Hum Mol Genet 19:494–505

    Article  CAS  PubMed  Google Scholar 

  • da Silva TF, Eira J, Lopes AT, Malheiro AR, Sousa V, Luoma A, Avila RL, Wanders RJ, Just WW, Kirschner DA et al (2014) Peripheral nervous system plasmalogens regulate Schwann cell differentiation and myelination. J Clin Invest 124:2560–2570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Munter S, Verheijden S, Vanderstuyft E, Malheiro AR, Brites P, Gall D, Schiffmann SN, Baes M (2016) Early-onset Purkinje cell dysfunction underlies cerebellar ataxia in peroxisomal multifunctional protein-2 deficiency. Neurobiol Dis 94:157–168

    Article  PubMed  CAS  Google Scholar 

  • Fan CY, Pan J, Chu R, Lee D, Kluckman KD, Usuda N, Singh I, Yeldandi AV, Rao MS, Maeda N et al (1996) Hepatocellular and hepatic peroxisomal alterations in mice with a disrupted peroxisomal fatty acyl-coenzyme A oxidase gene. J Biol Chem 271:24698–24710

    Article  CAS  PubMed  Google Scholar 

  • Fan CY, Pan J, Usuda N, Yeldandi AV, Rao MS, Reddy JK (1998) Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. J Biol Chem 273:15639–15645

    Article  CAS  PubMed  Google Scholar 

  • Faust PL (2003) Abnormal cerebellar histogenesis in PEX2 Zellweger mice reflects multiple neuronal defects induced by peroxisome deficiency. J Comp Neurol 461:394–413

    Article  CAS  PubMed  Google Scholar 

  • Faust PL, Hatten ME (1997) Targeted deletion of the PEX2 peroxisome assembly gene in mice provides a model for Zellweger syndrome, a human neuronal migration disorder. J Cell Biol 139:1293–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faust PL, Su HM, Moser A, Moser HW (2001) The peroxisome deficient PEX2 Zellweger mouse: pathologic and biochemical correlates of lipid dysfunction. J Mol Neurosci 16:221–289

    Article  Google Scholar 

  • Faust JE, Manisundaram A, Ivanova PT, Milne SB, Summerville JB, Brown HA, Wangler M, Stern M, McNew JA (2014) Peroxisomes are required for lipid metabolism and muscle function in Drosophila melanogaster. PLoS One 9:e100213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferdinandusse S, Kostopoulos P, Denis S, Rusch H, Overmars H, Dillmann U, Reith W, Haas D, Wanders RJA, Duran M et al (2006) Mutations in the gene encoding Peroxisomal Sterol Carrier Protein X (SCPx) Cause Leukencephalopathy with Dystonia and motor neuropathy. Am J Hum Genet 78:1046–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferdinandusse S, Jimenez-Sanchez G, Koster J, Denis S, Van Roermund CW, Silva-Zolezzi I, Moser AB, Visser WF, Gulluoglu M, Durmaz O et al (2015) A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. Hum Mol Genet 24:361–370

    Article  CAS  PubMed  Google Scholar 

  • Forss-Petter S, Werner H, Berger J, Lassmann H, Molzer B, Schwab MH, Bernheimer H, Zimmermann F, Nave KA (1997) Targeted inactivation of the X-linked adrenoleukodystrophy gene in mice. J Neurosci Res 50:829–543

    Article  CAS  PubMed  Google Scholar 

  • Hanson MG, Fregoso VL, Vrana JD, Tucker CL, Niswander LA (2014) Peripheral nervous system defects in a mouse model for peroxisomal biogenesis disorders. Dev Biol 395:84–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiebler S, Masuda T, Hacia JG, Moser AB, Faust PL, Liu A, Chowdhury N, Huang N, Lauer A, Bennett J et al (2014) The Pex1-G844D mouse: a model for mild human Zellweger spectrum disorder. Mol Genet Metab 111:522–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulshagen L, Krysko O, Bottelbergs A, Huyghe S, Klein R, Van Veldhoven PP, De Deyn PP, D’Hooge R, Hartmann D, Baes M (2008) Absence of functional peroxisomes from mouse CNS causes dysmyelination and axon degeneration. J Neurosci 28:4015–4027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huyghe S, Schmalbruch H, De Gendt K, Verhoeven G, Guillou F, Van Veldhoven PP, Baes M (2006a) Peroxisomal multifunctional protein 2 is essential for lipid homeostasis in sertoli cells and male fertility in mice. Endocrinology 147:2228–2236

    Article  CAS  PubMed  Google Scholar 

  • Huyghe S, Schmalbruch H, Hulshagen L, Van Veldhoven P, Baes M, Hartmann D (2006b) Peroxisomal multifunctional protein-2 deficiency causes motor deficits and glial lesions in the adult central nervous system. Am J Pathol 168:1321–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen A, Gressens P, Grabenbauer M, Baumgart E, Schad A, Vanhorebeek I, Brouwers A, Declercq PE, Fahimi D, Evrard P et al (2003) Neuronal migration depends on intact peroxisomal function in brain and in extraneuronal tissues. J Neurosci 23:9732–9741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keane MH, Overmars H, Wikander TM, Ferdinandusse S, Duran M, Wanders RJ, Faust PL (2007) Bile acid treatment alters hepatic disease and bile acid transport in peroxisome-deficient PEX2 Zellweger mice. Hepatology 45:982–997

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Shinnoh N, Kondo A, Yamada T (1997) Adrenoleukodystrophy protein-deficient mice represent abnormality of very long chain fatty acid metabolism. Biochem Biophys Res Commun 232:631–636

    Article  CAS  PubMed  Google Scholar 

  • Komljenovic D, Sandhoff R, Teigler A, Heid H, Just WW, Gorgas K (2009) Disruption of blood-testis barrier dynamics in ether-lipid-deficient mice. Cell Tissue Res 337:281–299

    Article  CAS  PubMed  Google Scholar 

  • Krysko O, Hulshagen L, Janssen A, Schütz G, Klein R, De Bruycker M, Espeel M, Gressens P, Baes M (2007) Neocortical and cerebellar developmental abnormalities in conditions of selective elimination of peroxisomes from brain or from liver. J Neurosci Res 85:58–72

    Article  CAS  PubMed  Google Scholar 

  • Krysko O, Stevens M, Langenberg T, Fransen M, Espeel M, Baes M (2010) Peroxisomes in zebrafish: distribution pattern and knockdown studies. Histochem Cell Biol 134:39–51

    Article  CAS  PubMed  Google Scholar 

  • Li X, Baumgart E, Dong GX, Morrell JC, Jimenez-Sanchez G, Valle D, Smith KD, Gould SJ (2002a) PEX11alpha is required for peroxisome proliferation in response to 4-phenylbutyrate but is dispensable for peroxisome proliferator-activated receptor alpha-mediated peroxisome proliferation. Mol Cell Biol 22:8226–8240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Baumgart E, Morrell JC, Jimenez-Sanchez G, Valle D, Gould SJ (2002b) PEX11 beta deficiency is lethal and impairs neuronal migration but does not abrogate peroxisome function. Mol Cell Biol 22:4358–4365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liegel RP, Ronchetti A, Sidjanin DJ (2014) Alkylglycerone phosphate synthase (AGPS) deficient mice: models for rhizomelic chondrodysplasia punctate type 3 (RCDP3) malformation syndrome. Mol Genet Metab Rep 1:299–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liegel R, Chang B, Dubielzig R, Sidjanin DJ (2011) Blind sterile 2 (bs2), a hypomorphic mutation in Agps, results in cataracts and male sterility in mice. Mol Genet Metab 103:51–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu JF, Lawler AM, Watkins PA, Powers JM, Moser AB, Moser HW, Smith KD (1997) A mouse model for X-linked adrenoleukodystrophy. Proc Natl Acad Sci U S A 94:9366–9371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mast FD, Li J, Virk MK, Hughes SC, Simmonds AJ, Rachubinski RA (2011) A Drosophila model for the Zellweger spectrum of peroxisome biogenesis disorders. Dis Model Mech 4:659–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell M, Bjorkman J, Nguyen T, Sharp P, Finnie J, Paterson C, Tonks I, Paton BC, Kay GF, Crane DI (2003) Pex13 Inactivation in the mouse disrupts peroxisome biogenesis and leads to a Zellweger syndrome phenotype. Mol Cell Biol 23:5947–5957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama M, Sato H, Okuda T, Fujisawa N, Kono N, Arai H, Suzuki E, Umeda M, Ishikawa HO, Matsuno K (2011) Drosophila carrying Pex3 or Pex16 mutations are models of zellweger syndrome that reflect its symptoms associated with the absence of peroxisomes. PLoS One 6:e22984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pujol A, Hindelang C, Callizot N, Bartsch U, Schachner M, Mandel JL (2002) Late onset neurological phenotype of the X-ALD gene inactivation in mice: a mouse model for adrenomyeloneuropathy. Hum Mol Genet 11:499–505

    Article  CAS  PubMed  Google Scholar 

  • Rodemer C, Thai TP, Brugger B, Kaercher T, Werner H, Nave KA, Wieland F, Gorgas K, Just WW (2003) Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum Mol Genet 12:1881–1895

    Article  CAS  PubMed  Google Scholar 

  • Rokka A, Antonenkov VD, Soininen R, Immonen HL, Pirilä PL, Bergmann U, Sormunen RT, Weckström M, Benz R, Hiltunen JK (2009) Pxmp2 is a channel-forming protein in Mammalian peroxisomal membrane. PLoS One 4:e5090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Savolainen K, Kotti TJ, Schmitz W, Savolainen TI, Sormunen RT, Ilves M, Vainio SJ, Conzelmann E, Hiltunen JK (2004) A mouse model for alpha-methylacyl-CoA racemase deficiency: adjustment of bile acid synthesis and intolerance to dietary methyl-branched lipids. Hum Mol Genet 13:955–965

    Article  CAS  PubMed  Google Scholar 

  • Schutgens RBH, Bouman IW, Nijenhuis AA, Wanders RJA, Frumau MEJ (1993) Profiles of very-long-chain fatty acids in plasma, fibroblasts, and blood cells in Zellweger syndrome, X-linked adrenoleukodystrophy, and rhizomelic chondrodysplasia punctata. Clin Chem 39:1632–1637

    Article  CAS  PubMed  Google Scholar 

  • Seedorf U, Raabe M, Ellinghaus P, Kannenberg F, Fobker M, Engel T, Denis S, Wouters F, Wirtz KWA, Wanders RJA et al (1998) Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol carrier protein-x gene function. Genes Dev 12:1189–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sellin J, Wingen C, Gosejacob D, Senyilmaz D, Hänschke L, Büttner S, Meyer K, Bano D, Nicotera P, Teleman AA et al (2018) Dietary rescue of lipotoxicity-induced mitochondrial damage in Peroxin19 mutants. PLoS Biol 16:e2004893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shaffer JB, Preston KE (1990) Molecular analysis of an acatalasemic mouse mutant. Biochem Biophys Res Commun 173:1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Sheridan R, Lampe K, Shanmukhappa SK, Putnam P, Keddache M, Divanovic S, Bezerra J, Hoebe K (2011) Lampe1: an ENU-germline mutation causing spontaneous hepatosteatosis identified through targeted exon-enrichment and next-generation sequencing. PLoS One 6:e21979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strachan LR, Stevenson TJ, Freshner B, Keefe MD, Miranda Bowles D, Bonkowsky JL (2017) A zebrafish model of X-linked adrenoleukodystrophy recapitulates key disease features and demonstrates a developmental requirement for abcd1 in oligodendrocyte patterning and myelination. Hum Mol Genet 26:3600–3614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teigler A, Komljenovic D, Draguhn A, Gorgas K, Just WW (2009) Defects in myelination, paranode organization and Purkinje cell innervation in the ether lipid-deficient mouse cerebellum. Hum Mol Genet 18:1897–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thieringer H, Moellers B, Dodt G, Kunau W-H, Driscoll M (2003) Modeling human peroxisome biogenesis disorders in the nematode Caenorhabditis elegans. J Cell Sci 116:1797–1804

    Article  CAS  PubMed  Google Scholar 

  • Weng H, Ji X, Naito Y, Endo K, Ma X, Takahashi R, Shen C, Hirokawa G, Fukushima Y, Iwai N (2013) Pex11α deficiency impairs peroxisome elongation and division and contributes to nonalcoholic fatty liver in mice. Am J Physiol Endocrinol Metab 304:E187–E196

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Chen L, Jiralerspong S, Snowden A, Steinberg S, Braverman N (2010) Recovery of PEX1-Gly843Asp peroxisome dysfunction by small-molecule compounds. Proc Natl Acad Sci U S A 107:5569–5574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Takashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takashima, S., Shimozawa, N. (2019). Model Organisms for Understanding Peroxisomal Disorders. In: Imanaka, T., Shimozawa, N. (eds) Peroxisomes: Biogenesis, Function, and Role in Human Disease. Springer, Singapore. https://doi.org/10.1007/978-981-15-1169-1_6

Download citation

Publish with us

Policies and ethics