Skip to main content
  • 550 Accesses

Abstract

Peroxisomes are subcellular organelles bounded by a single membrane. They are involved in a variety of metabolic processes, including the β-oxidation of very long chain fatty acids, as well as the synthesis of ether-phospholipids and bile acid in mammals. These organelles were first described in 1954 in the cytoplasm of the proximal tubule cells of the mouse kidney by Rhodin and were first known as “microbodies”. Subsequently, in 1965 de Duve et al. isolated microbodies from the rat liver and defined them as membrane-bound organelles containing various H2O2-producing oxidases along with H2O2-degrading catalase, and named them peroxisomes. The fatty acid β-oxidation system was identified in rat liver peroxisomes in 1976. Goldfischer discovered that peroxisomes were absent from the tissues of patients with Zellweger syndrome in 1973, and the metabolic defects that characterize this disease contributed to the elucidation of the metabolic roles of peroxisomes in humans. With regard to the biogenesis of the peroxisome in mammals, several models have been proposed and the following process is generally accepted. Pre-peroxisomes bud from the endoplasmic reticulum, and peroxisomal membrane and matrix proteins are then imported into these pre-peroxisomes. The mature peroxisomes grow by division. Here, I look back the history of peroxisomal research based on the investigation of the biogenesis and function of peroxisomes, along with peroxisomal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ER:

Endoplasmic reticulum

PBD:

Peroxisome biogenesis disorder

PMP:

Peroxisomal membrane protein

RCDP:

Rhizomelic chondrodysplasia punctata

VLCFA:

Very long chain fatty acid

X-ALD:

X-linked adrenoleukodystrophy

References

  • Agrawal G, Subramani S (2016) De novo peroxisome biogenesis: evolving concepts and conundrums. Biochim Biophys Acta 1863(5):892–901

    Article  CAS  PubMed  Google Scholar 

  • Baudhuin P (1969) Liver peroxisomes, cytology and function. Ann N Y Acad Sci 168(2):214–228

    Article  CAS  PubMed  Google Scholar 

  • Baudhuin P et al (1965) Combined biochemical and morphological study of particulate fractions from rat liver. Analysis of preparations enriched in lysosomes or in particles containing urate oxidase, D-amino acid oxidase, and catalase. J Cell Biol 26(1):219–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernhard W, Rouiller C (1956) Microbodies and the problem of mitochondrial regeneration in liver cells. J Biophys Biochem Cytol 2(4 Suppl):355–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blaw M (1970) Melanodermic type leukodystrophy (adrenoleukodystrophy). In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 10. American Elsevier, New York, pp 128–133

    Google Scholar 

  • Bowen P et al (1964) A familial syndrome of multiple congenital defects. Bull Johns Hopkins Hosp 114:402–414

    CAS  PubMed  Google Scholar 

  • Braverman N et al (1997) Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nat Genet 15(4):369–376

    Article  CAS  PubMed  Google Scholar 

  • Breidenbach RW, Beevers H (1967) Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm. Biochem Biophys Res Commun 27(4):462–469

    Article  CAS  PubMed  Google Scholar 

  • Breidenbach RW et al (1968) Characterization of glyoxysomes from castor bean endosperm. Plant Physiol 43(5):705–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper TG, Beevers H (1969) β oxidation in glyoxysomes from castor bean endosperm. J Biol Chem 244(13):3514–3520

    CAS  PubMed  Google Scholar 

  • Datta NS et al (1984) Deficiency of enzymes catalyzing the biosynthesis of glycerol-ether lipids in Zellweger syndrome. A new category of metabolic disease involving the absence of peroxisomes. N Engl J Med 311(17):1080–1083

    Article  CAS  PubMed  Google Scholar 

  • de Duve C (1983) Microbodies in the living cell. Sci Am 248(5):74–84

    Article  PubMed  Google Scholar 

  • de Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46(2):323–357

    Article  PubMed  Google Scholar 

  • Distel B et al (1996) A unified nomenclature for peroxisome biogenesis factors. J Cell Biol 135(1):1–3

    Article  CAS  PubMed  Google Scholar 

  • Engelen M et al (2012) X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J Rare Dis 7:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Erdmann R et al (1989) Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 86(14):5419–5423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdmann R et al (1991) PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. Cell 64(3):499–510

    Article  CAS  PubMed  Google Scholar 

  • Goldfischer S et al (1973) Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 182(4107):62–64

    Article  CAS  PubMed  Google Scholar 

  • Gould SG et al (1987) Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J Cell Biol 105(6 Pt 2):2923–2931

    Article  CAS  PubMed  Google Scholar 

  • Gould SJ et al (1988) Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J Cell Biol 107(3):897–905

    Article  CAS  PubMed  Google Scholar 

  • Graham IA (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59:115–142

    Article  CAS  PubMed  Google Scholar 

  • Haanstra JR et al (2016) Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. Biochim Biophys Acta 1863(5):1038–1048

    Article  CAS  PubMed  Google Scholar 

  • Hess R et al (1965) Nature of the hepatomegalic effect produced by ethyl-chlorophenoxy-isobutyrate in the rat. Nature 208(5013):856–858

    Article  CAS  PubMed  Google Scholar 

  • Higashi T, Peters T Jr (1963) Studies on rat liver catalase. I. Combined immunochemical and enzymatic determination of catalase in liver cell fractions. J Biol Chem 238:3945–3951

    CAS  PubMed  Google Scholar 

  • Igarashi M et al (1976) Fatty acid abnormality in adrenoleukodystrophy. J Neurochem 26(4):851–860

    Article  CAS  PubMed  Google Scholar 

  • Imanaka T et al (1987) Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis but not a membrane potential. J Cell Biol 105(6 Pt 2):2915–2922

    Article  CAS  PubMed  Google Scholar 

  • Imanaka T (2018) Biogenesis, the function of peroxisomes, and their role in genetic disease: with a focus on the ABC transporter. Yakugaku Zasshi 138:1067–1083

    Article  CAS  PubMed  Google Scholar 

  • Imanaka T (2019) Biogenesis and function of peroxisomes with a focus on the ABC transporter. Biol Pharm Bull 42(5):649–665. https://doi.org/10.1248/bpb.b18-00723

    Article  CAS  PubMed  Google Scholar 

  • Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347(6294):645–650

    Article  CAS  PubMed  Google Scholar 

  • Kase BF et al (1985) Defective peroxisomal cleavage of the C27-steroid side chain in the cerebro-hepato-renal syndrome of Zellweger. J Clin Invest 75(2):427–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazarow PB, de Duve C (1976) A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A 73(6):2043–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazarow PB, Fujiki Y (1985) Biogenesis of peroxisomes. Annu Rev Cell Biol 1:489–530

    Article  CAS  PubMed  Google Scholar 

  • Leighton F et al (1968) The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions. J Cell Biol 37(2):482–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moser AE et al (1984) The cerebrohepatorenal (Zellweger) syndrome. Increased levels and impaired degradation of very-long-chain fatty acids and their use in prenatal diagnosis. N Engl J Med 310(18):1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Mosser J et al (1993) Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361(6414):726–730

    Article  CAS  PubMed  Google Scholar 

  • Motley AM et al (1997) Rhizomelic chondrodysplasia punctata is a peroxisomal protein targeting disease caused by a non-functional PTS2 receptor. Nat Genet 15(4):377–380

    Article  CAS  PubMed  Google Scholar 

  • Novikoff PM, Novikoff AB (1972) Peroxisomes in absorptive cells of mammalian small intestine. J Cell Biol 53(2):532–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opperdoes FR, Borst P (1977) Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett 80(2):360–364

    Article  CAS  PubMed  Google Scholar 

  • Osumi T, Hashimoto T (1978) Enhancement of fatty acyl-CoA oxidizing activity in rat liver peroxisomes by di-(2-ethylhexyl)phthalate. J Biochem 83(5):1361–1365

    Article  CAS  PubMed  Google Scholar 

  • Purdue PE et al (1997) Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor. Nat Genet 15(4):381–384

    Article  CAS  PubMed  Google Scholar 

  • Reddy JK, Krishnakantha TP (1975) Hepatic peroxisome proliferation: induction by two novel compounds structurally unrelated to clofibrate. Science 190(4216):787–789

    Article  CAS  PubMed  Google Scholar 

  • Rhodin J (1954) Correlation of ultrastructural organization and function in normal and experimentally changed proximal convoluted tubule cells of the mouse kidney. PhD thesis.

    Google Scholar 

  • Scotto JM et al (1982) Infantile phytanic acid storage disease, a possible variant of Refsum’s disease: three cases, including ultrastructural studies of the liver. J Inherit Metab Dis 5(2):83–90

    Article  CAS  PubMed  Google Scholar 

  • Shimozawa N et al (1992) A human gene responsible for Zellweger syndrome that affects peroxisome assembly. Science 255(5048):1132–1134

    Article  CAS  PubMed  Google Scholar 

  • Spranger JW et al (1971) Heterogeneity of Chondrodysplasia punctata. Humangenetik 11(3):190–212

    CAS  PubMed  Google Scholar 

  • Steinberg G et al (2017) Woronin body-based sealing of septal pores. Fungal Genet Biol 109:53–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiura A et al (2017) Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature 542(7640):251–254

    Article  CAS  PubMed  Google Scholar 

  • Svoboda DJ, Azarnoff DL (1966) Response of hepatic microbodies to a hypolipidemic agent, ethyl chlorophenoxyisobutyrate (CPIB). J Cell Biol 30(2):442–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorp JM, Waring WS (1962) Modification of metabolism and distribution of lipids by ethyl chlorophenoxyisobutyrate. Nature 194:948–949

    Article  CAS  PubMed  Google Scholar 

  • Trompier D, Savary S (2013) X-linked adrenoleukodystrophy. Colloquium series on the genetic basis of human disease #4, Morgan and Claypool Life Sciences, Williston, USA

    Article  Google Scholar 

  • Tsukamoto T et al (1990) Isolation and characterization of Chinese hamster ovary cell mutants defective in assembly of peroxisomes. J Cell Biol 110(3):651–660

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto T et al (1991) Restoration by a 35K membrane protein of peroxisome assembly in a peroxisome-deficient mammalian cell mutant. Nature 350(6313):77–81

    Article  CAS  PubMed  Google Scholar 

  • Ulrich J et al (1978) Adrenoleukodystrophy. Preliminary report of a connatal case. Light- and electron microscopical, immunohistochemical and biochemical findings. Acta Neuropathol 43(1–2):77–83

    Article  CAS  PubMed  Google Scholar 

  • Vamecq J et al (2014) The human peroxisome in health and disease: the story of an oddity becoming a vital organelle. Biochimie 98:4–15

    Article  CAS  PubMed  Google Scholar 

  • Wanders RJ et al (2017) Clinical and laboratory diagnosis of peroxisomal disorders. Methods Mol Biol 1595:329–342

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The publication is supported in part by a Grant-in-Aid for Intractable Diseases from the Ministry of Health, Labour and Welfare of Japan. Pacific Edit reviewed the manuscript prior to submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneo Imanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Imanaka, T. (2019). The History of Peroxisomal Research. In: Imanaka, T., Shimozawa, N. (eds) Peroxisomes: Biogenesis, Function, and Role in Human Disease. Springer, Singapore. https://doi.org/10.1007/978-981-15-1169-1_1

Download citation

Publish with us

Policies and ethics