Skip to main content

Turing Patterns in a Cross Diffusive System

  • Conference paper
  • First Online:
Mathematical Analysis II: Optimisation, Differential Equations and Graph Theory (ICRAPAM 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 307))

  • 544 Accesses

Abstract

In this paper we investigate the role of cross diffusion in pattern formation for a tritrophic food chain model. In the formulated model the prey interacts with the mid level predator in accordance with Holling Type II functional response and the mid and top level predator interact via Crowley Martin functional response. We have proved that the stationary uniform solution of the system is stable in the presence of diffusion and absence of cross diffusion but unstable in the presence of cross diffusion. Moreover we carry out numerical simulations to understand the Turing pattern formation for various self and cross diffusivity coefficients of the top level predator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Kuang, E. Beretta, Global qualitative analysis of a ratio-dependent predatorprey system. J. Math. Biol. 36(4), 389–406 (1998)

    Article  MathSciNet  Google Scholar 

  2. L.A. Segel, Modeling Dynamic Phenomena in Molecular and Cellular Biology (Cambridge University Press, Cambridge, 1984)

    Google Scholar 

  3. P.W. Price et al., Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11(1), 41–65 (1980)

    Article  Google Scholar 

  4. A. Hastings, T. Powell, Chaos in a three-species food chain. Ecology 72(3), 896–903 (1991)

    Article  Google Scholar 

  5. K. McCann, P. Yodzis, Biological conditions for chaos in a three-species food chain. Ecology 75(2), 561–564 (1994)

    Article  Google Scholar 

  6. S. Gakkhar, R.K. Naji, Chaos in three species ratio dependent food chain. Chaos Solitons Fractals 14(5), 771–778 (2002)

    Article  MathSciNet  Google Scholar 

  7. V. Rai, R.K. Upadhyay, Chaotic population dynamics and biology of the top-predator. Chaos Solitons Fractals 21(5), 1195–1204 (2004)

    Article  MathSciNet  Google Scholar 

  8. P.H. Crowley, E.K. Martin, Functional responses and interference within and between year classes of a dragonfly population. J. N. Am. Benthol. Soc. 8(3), 211–221 (1989)

    Article  Google Scholar 

  9. R.K. Upadhyay, R.K. Naji, Dynamics of a three species food chain model with Crowley-Martin type functional response. Chaos Solitons Fractals 42(3), 1337–1346 (2009)

    Article  MathSciNet  Google Scholar 

  10. G.T. Skalski, J.F. Gilliam, Functional responses with predator interference: viable alternatives to the Holling type II model. Ecology 82(11), 3083–3092 (2001)

    Article  Google Scholar 

  11. Y. Dong et al., Qualitative analysis of a predator-prey model with crowley-martin functional response. Int. J. Bifurc. Chaos 25(09), 1550110 (2015)

    Article  MathSciNet  Google Scholar 

  12. A.M. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 237(641), 37–72 (1952)

    Google Scholar 

  13. S. Kondo, T. Miura, Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329(5999), 1616–1620 (2010)

    Article  MathSciNet  Google Scholar 

  14. S. Kondo, The reaction-diffusion system: a mechanism for autonomous pattern formation in the animal skin. Genes Cells 7(6), 535–541 (2002)

    Article  Google Scholar 

  15. B. Dubey, N. Kumari, R.K. Upadhyay, Spatiotemporal pattern formation in a diffusive predator-prey system: an analytical approach. J. Appl. Math. Comput. 31(1–2), 413–432 (2009)

    Article  MathSciNet  Google Scholar 

  16. N. Kumari, Pattern formation in spatially extended tritrophic food chain model systems: generalist versus specialist top predator. ISRN Biomath. 2013, 12 (2013)

    Google Scholar 

  17. K. Kuto, Stability of steady-state solutions to a preypredator system with cross-diffusion. J. Differ. Equ. 197(2), 293–314 (2004)

    Article  Google Scholar 

  18. K. Kuto, Y. Yamada, Multiple coexistence states for a preypredator system with cross-diffusion. J. Differ. Equ. 197(2), 315–348 (2004)

    Article  Google Scholar 

  19. P.Y.H. Pang, M. Wang, Strategy and stationary pattern in a three-species predator-prey model. J. Differ. Equ. 200(2), 245–273 (2004)

    Article  MathSciNet  Google Scholar 

  20. M. Wang, Stationary patterns caused by cross-diffusion for a three-species prey-predator model. Comput. Math. Appl. 52(5), 707–720 (2006)

    Article  MathSciNet  Google Scholar 

  21. A.B. Medvinsky et al., Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44(3), 311–370 (2002)

    Article  MathSciNet  Google Scholar 

  22. C. Tian, Z. Ling, Z. Lin, Spatial patterns created by cross-diffusion for a three-species food chain model. Int. J. Biomath. 7(02), 1450013 (2014)

    Article  MathSciNet  Google Scholar 

  23. C. Tian, Turing patterns created by cross-diffusion for a Holling II and Leslie-Gower type three species food chain model. J. Math. Chem. 49(6), 1128–1150 (2011)

    Article  MathSciNet  Google Scholar 

  24. N. Kumari, N. Mohan, Cross diffusion induced turing patterns in a tritrophic food chain model with crowley-martin functional response. Mathematics 7(3), 229 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work has further been extended and published in [24].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitu Kumari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohan, N., Kumari, N. (2020). Turing Patterns in a Cross Diffusive System. In: Deo, N., Gupta, V., Acu, A., Agrawal, P. (eds) Mathematical Analysis II: Optimisation, Differential Equations and Graph Theory. ICRAPAM 2018. Springer Proceedings in Mathematics & Statistics, vol 307. Springer, Singapore. https://doi.org/10.1007/978-981-15-1157-8_2

Download citation

Publish with us

Policies and ethics