Skip to main content

An Experimental Investigation of New Hybrid Composite Material Using Ramie-Flax and Its Mechanical Properties Through Finite Element Method

  • Conference paper
  • First Online:
Recent Trends in Mechanical Engineering

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

This article describes the occurrence of the recent natural fiber hybrid composite mistreatment as strengthening with the hybrid materials using fiber and polyester matrix and polyester resins. The sheets of the composites were made from Ramie fiber with the matrix of Flax fiber and polyester. The resin used was polyester resin. The composite weight division was maintained at 20% fiber and 80% resin. To verify the mechanical characteristics of the natural hybrid composite fiber, the cutting of the specimen is finished within the required shape after the hybrid composites have been made. Thus, fashioned material permitted tensile, flexural, effect and compression tests at entirely in distinct orientations. In order to match experimental outcomes, the finite element inquiry is administered. The conclusions were taken as to the differentiation of the effects of these hybrid composites on the various characteristics of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang R-M, Zheng S-R, Zheng Y-P (2011) Introduction to polymer matrix composites. In: Polymer Matrix Composites &Technology. Woodhead Publishing Series in Composites Science and Engineering, pp 1–25

    Google Scholar 

  2. Fiorea V, Calabreseb L, Scalicia T, Bruzzanitib P Valenzaa A (2018) Experimental design of the bearing performances of flax fiber reinforced epoxy composites by a failure map. Compos B Eng 148: 40–48

    Article  Google Scholar 

  3. Fragassa C, Pavlovic A, Santulli C (2017) Mechanical and impact characterisation of flax and basalt fibre vinylester composites and their hybrids. Compos B Eng S1359–8368(17):30048-3

    Google Scholar 

  4. Hamidon MH, Sultan MTH, Ariffin AH (2019) Investigation of mechanical testing on hybrid composite materials. Fail Anal Bio-compos Fibre-Reinf Compos Hybrid Compos:133–156

    Google Scholar 

  5. Yan Y (2016) Developments in fibers for technical non wovens. Adv in Techn Nonwovens

    Google Scholar 

  6. Hamdan A, Mustapha F, Ahmad KA, Mohd Rafie AS, Ishak MR, Ismail AE (2016) The bonded macro fiber composite (MFC) and woven kenaf effect analyses on the micro energy harvester performance of kenaf plate using modal testing and Taguchi method. J Vibroeng:18

    Google Scholar 

  7. Hendra (2017) A study on cotton-ramie fabric reinforced composites. Int J Mater Sci 12(1):117–125, ISSN 0973–4589

    Google Scholar 

  8. Müssig J (2008) Cotton fibre-reinforced thermosets versus ramie composites: a comparative study using petrochemical- and agro-based resins. J Polym Environ 16(2):94–102

    Article  Google Scholar 

  9. Elmahdy, EE (2015) A new approach for Weibull modeling for reliability life data analysis. Appl Math Comput 250:708–720

    Article  MathSciNet  Google Scholar 

  10. Bevitori AB, Silva ILAD, Carreiro RS, Margem FM, Monteiro SN (2012) Elastic modulus variation with diameter for ramie fiber. Paper presented at the Characterization of Minerals, Metals, and Materials—TMS 2012 Annual Meeting and Exhibition, Orlando, FL

    Google Scholar 

  11. Monteiro SN, Satyanarayana KG, Ferreira AS, Nascimento DCO, Lopes FPD, Silva ILA, Bevitori AB, Inácio WP, Bravo Neto J, Portela TG (2010) Selection of high strength natural fiber. RevistaMateria 15(4):488–505

    Google Scholar 

  12. Du Y, Yan N, Kortschot M (2015) The use of ramie fiber as reinforcements in composites. University of Toronto, Canada, Biofiber Reinforcements in Composite Materials. Book edited by Omar Faruk, MohiniSain, pp 104–136

    Chapter  Google Scholar 

  13. Weibull W (1939) A statistical theory of the strength of materials, vol 151. IngeniörsvetenskapsakademiensHandlingar, Stockholm

    Google Scholar 

  14. Nam S, Netravali AN (2006) Green composites. Physical properties of ramie fibers for environment-friendly green composites. Fibers and Polym 7(4):372–379

    Article  Google Scholar 

  15. Suizu N, Uno T, Goda K, Ohgi J (2009) Tensile and impact properties of fully green composites reinforced with mercerized ramie fibers. J Mater Sci 44(10):2477–2482

    Article  Google Scholar 

  16. Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nano composites. Biomacromolecules 12(7):2456–2465

    Article  Google Scholar 

  17. Junior de Menezes A, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50(19):4552–4563

    Article  Google Scholar 

  18. Marsyahyo E, Soekrisno, Rochardjo HSB, Jamasri (2008) Identification of ramie single fiber surface topography influenced by solvent-based treatment. J Ind Text 38(2):127–137

    Article  Google Scholar 

  19. Munawar SS, Umemura K, Kawai S (2008) Manufacture of oriented board using mild steam treatment of plant fiber bundles. J Wood Sci 54(5):369–376

    Article  Google Scholar 

  20. Lee TS, Choi HY, Choi HN, Lee KY, Kim SH, Lee SG, Yong DK (2013) Effect of surface treatment of ramie fiber on the interfacial adhesion of ramie/acetylated epoxidized soybean oil (AESO) green composite. J Adhes Sci Technol 27(12):1335–1347

    Article  Google Scholar 

  21. Pal SK, Mukhopadhyay D, Sanyal SK, Mukherjea RN (1988) Studies on process variables for natural fiber composites—effect of polyesteramide polyol as interfacial agent. J Appl Polym Sci 35(4):973–985

    Article  Google Scholar 

  22. Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites. Carbohyd Polym 63(2):198–204

    Article  Google Scholar 

  23. Alloin F, D’Aprea A, Kissi NE, Dufresne A, Bossard F (2010) Nano composite polymer electrolyte based on whisker or microfibrils polyoxyethylene nano composites. Electrochimica Acta 55(18):5186–5194

    Article  Google Scholar 

  24. Kumar N, Siddesh Chincholia, Hegde PR, Shivagiria SY, Revanasiddappa M (2018) Synthesis and characterization of fly ash/wooden fiber reinforced epoxy resin polymer composite. Mater Today: Proc 5(1), Part 1:501–507

    Google Scholar 

  25. Pothnis JR, Ravikumar G, Joshi M, Akella K, Kumar S, Naik High NK (15 March 2012) Strain rate compressive behavior of epoxy LY 556: radial constraint effect. Mater Sci Eng A 538:210–218

    Google Scholar 

  26. Goda K, Asai T, Yamane T (2003) Development of ramie fiber reinforced biodegradable resin matrix composites by press forming and effect of chemical treatments. Zairyo/J Soc Mater Sci Jpn 52(10):1245–1252

    Article  Google Scholar 

  27. Kimura T, Kurata M, Matsuo T, Matsubara H, Sakobe T (2004) Compression molding and mechanical properties of green-composite based on ramie/PLA non-twisted commingled yarn. Zairyo/J Soc Mater Sci Jpn 53(7):776–781

    Article  Google Scholar 

  28. Alsina OLS, De Carvalho LH, Ramos Filho FG, D’Almeida JRM (2005) Thermal properties of hybrid lignocellulosic fabric-reinforced polyester matrix composites. Polym Test 24(1):81–85

    Article  Google Scholar 

  29. Müssig J (2008) Cotton fibre-reinforced thermosets versus ramie composites: a comparative study using petrochemical- and agro-based resins. J Polym Environ 16(2):94–102

    Article  Google Scholar 

  30. Lodha P, Netravali AN (2005) Characterization of stearic acid modified soy protein isolate resin and ramie fiber reinforced ‘green’ composites. Compos Sci Technol 65(78):1211–1225

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dara Ashok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ashok, D., Puhan, S., Pradhan, R., Kiran Babu, P., Srinivasa Reddy, Y. (2020). An Experimental Investigation of New Hybrid Composite Material Using Ramie-Flax and Its Mechanical Properties Through Finite Element Method. In: Narasimham, G., Babu, A., Reddy, S., Dhanasekaran, R. (eds) Recent Trends in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-1124-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1124-0_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1123-3

  • Online ISBN: 978-981-15-1124-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics