Skip to main content

Introduction

  • Chapter
  • First Online:
  • 296 Accesses

Abstract

In recent years, with the fast development of mobile Internet, the global mobile traffic demand has shown an explosive growth trend. Due to limited system capacity, the traditional single cellular network is difficult to guarantee the quality of transmission services for users. As one approach to coping with this challenge, the concept of heterogeneous wireless networks [1] (HWN) is proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhang N, Cheng N, Gamage AT et al (2015) Cloud assisted HetNets toward 5G wireless networks future of health insurance. IEEE Commun Mag 53:59–65

    Article  Google Scholar 

  2. Holland OD, Aijaz A, Kaltenberger F et al (2016) Management architecture for aggregation of heterogeneous systems and spectrum bands. IEEE Commun Mag 54:9–16

    Article  Google Scholar 

  3. Du Z, Sun Y, Guo W et al (2018) Data-driven deployment and cooperative self-organization in ultra-dense small cell networks. IEEE Access 6:22839–22848

    Article  Google Scholar 

  4. Cisco (2019) Cisco visual networking index: forecast and trends 2017–2022 white paper. Dod J (1999) Effective Substances. In: The dictionary of substances and their effects. Royal Society of Chemistry. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html

  5. ITU (2017) Opinion model for video-telephony applications. ITU-T Recommendation G.1070 ed

    Google Scholar 

  6. Wang PL et al (2017) A data-driven architecture for personalized QoE management in 5G wireless networks. IEEE Wirel Commun 24:102–110

    Article  Google Scholar 

  7. Bhushan N, Li J, Malladi D et al (2014) Network densification: the dominant theme for wireless evolution into 5G. IEEE Commun Mag 8(2):82–89

    Article  Google Scholar 

  8. Ma D, Ma M (2012) A QoS oriented vertical handoff scheme for WiMAX/WLAN overlay networks. IEEE Trans Mob Comput 23(4):598–606

    Google Scholar 

  9. Malanchini I, Cesana M, Gatti N (2013) Network selection and resource allocation games for wireless access networks. IEEE Trans Mob Comput 12(12):2427–2440

    Article  Google Scholar 

  10. Nguyen-Vuong Q T, Ghamri-Doudane Y, Agoulmine N (2008) On utility models for access network selection in wireless heterogeneous networks. In: IEEE network operations and management symposium (NOMS)

    Google Scholar 

  11. Alexander R, Sebastian M (2011) Recent multimedia QoE standardization activities in ITU-T SG12. IEEE Comsoc Mmtc E-Lett 6(8):10–14

    Google Scholar 

  12. Piamrat K, Ksentin A, Viho C (2008) QoE-based network selection for multimedia users in IEEE 802.11 wireless networks. In: IEEE local computer networks (LCN)

    Google Scholar 

  13. Hou J, Brien DC (2006) Vertical handover decision making algorithm using fuzzy logic for the integrated radio-and-ow system. IEEE Trans Wirel Commun 5(1):176–185

    Article  Google Scholar 

  14. Piamrat K, Ksentin A, Viho C (2008) QoE-aware admission control for multimedia applications in IEEE 802.11 wireless networks. In: IEEE vehicular technology conference (VTC fall)

    Google Scholar 

  15. Stevens-Navarro E, Lin Y, Wong VWS (2008) An MDP-based vertical handoff decision algorithm for heterogeneous wireless networks. IEEE Trans Veh Technol 57(2):1243–1254

    Article  Google Scholar 

  16. Keshavarz-Haddad A, Aryafar E, Wang M, Chiang M (2017) HetNets selection by clients: convergence, efficiency, and practicality. IEEE ACM Trans Netw 25(1):406–419

    Article  Google Scholar 

  17. Zhu K, Hossain E, Niyato D (2014) Pricing, spectrum sharing, and service selection in two-tier small cell networks: a hierarchical dynamic game approach. IEEE Trans Mob Comput 13(8):1843–1856

    Article  Google Scholar 

  18. Nguyen DD, Nguyen HX, White LB (2017) Reinforcement learning with network-assisted feedback for heterogeneous RAT selection. IEEE Trans Wirel Commun 16(9):6062–6076

    Article  Google Scholar 

  19. Trestian R, Ormond O, Muntean G (2012) Game theory-based network selection: solutions and challenges. IEEE Commun Surv Tutor 14(4):1–20

    Article  Google Scholar 

  20. Liu D, Wang L et al (2016) User association in 5G networks: a survey and an outlook. IEEE Commun Surv Tutor 18(2):1018–1044

    Article  Google Scholar 

  21. Chen YJ, Wu KS, Zhang Q (2015) From QoS to QoE: a tutorial on video quality assessment. IEEE Commun Surv Tutor 17:1126–1165

    Article  Google Scholar 

  22. Wu J, Cheng B, Wang M et al (2017) Quality-aware energy optimization in wireless video communication with multipath TCP. IEEE ACM Trans Netw 25:2701–2718

    Article  Google Scholar 

  23. Du Z, Liu D, Yin L (2017) User in the loop: QoE-oriented optimization in communication and networks. In: The 6th international conference on computer science and network technology (ICCSNT)

    Google Scholar 

  24. Zhang J, Ansari N (2011) On assuring end-to-end QoE in next generation networks: challenges and a possible solution. IEEE Commun Mag 49:185–191

    Article  Google Scholar 

  25. Sutton RS, Barto AG (2017) Reinforcement learning: an introduction, 2nd edn. MIT Press, London

    Google Scholar 

  26. Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: a survey. J Artif Intell Res 4:237–285

    Article  Google Scholar 

  27. Klaine PV, Imran MA et al (2017) A survey of machine learning techniques applied to self-organizing cellular networks. IEEE Commun Surv Tutor 19(4):2392–2431

    Article  Google Scholar 

  28. Xu Y, Wang J, Wu Q et al (2015) A game-theoretic perspective on self-organizing optimization for cognitive small cells. IEEE Commun Mag 53:100–108

    Article  Google Scholar 

  29. Arye M et al (2012) A formally-verified migration protocol for mobile, multi-homed hosts. In: IEEE ICNP

    Google Scholar 

  30. Wallace T, Shami A (2012) A review of multihoming issues using the stream control transmission protocol. IEEE Commun Surv Tutor 14(2):565–578

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Du .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Du, Z., Jiang, B., Wu, Q., Xu, Y., Xu, K. (2020). Introduction. In: Towards User-Centric Intelligent Network Selection in 5G Heterogeneous Wireless Networks. Springer, Singapore. https://doi.org/10.1007/978-981-15-1120-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1120-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1119-6

  • Online ISBN: 978-981-15-1120-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics