Skip to main content

An SNN-DBSCAN Based Clustering Algorithm for Big Data

  • Conference paper
  • First Online:
Advanced Computing and Intelligent Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1082))

Abstract

Clustering is a technique to partition data into different groups in such a way that data items in a group are more similar to each other than the data points in any other group. The assumption of infinite main memory is very usual while designing most of the clustering algorithms but this assumption fails when the size of data set starts increasing. In this scenario, data needs to be stored in the secondary memory and time spent in the input/outputs (I/O) dominates the actual computational time. Therefore by reducing the I/O, the efficiency of the clustering techniques can be improved. In this paper, one shared near neighbor based algorithm is devised by minimizing its I/O complexity to make it suitable for the Big Data in external memory model proposed by Aggarwal and Vitter. There is no change in the computational steps, hence cluster quality remains the same. We implement the algorithm in the STXXL library to show its efficacy for Big Data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://en.wikipedia.org/?title=Binary_prefix.

References

  1. Aggarwal, A., Vitter, J.: The input/output complexity of sorting and related problems. Commun. ACM 31(9), 1116–1127 (1988)

    Article  MathSciNet  Google Scholar 

  2. Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable k-means++. Proc. VLDB Endow. 5(7), 622–633 (2012)

    Article  Google Scholar 

  3. Ball, G.H., Hall, D.J.: A clustering technique for summarizing multivariate data. Behav. Sci. 12(2), 153–155 (1967)

    Article  Google Scholar 

  4. Bezdek, J.C., Ehrlich, R., Full, W.: Fcm: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2), 191–203 (1984)

    Article  Google Scholar 

  5. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic information retrieval. In: Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, pp. 626–635. ACM (1997)

    Google Scholar 

  6. Dementiev, R., Kettner, L., Sanders, P.: STXXL: standard template library for xxl data sets. Softw. Pract. Exp. 38(6), 589–637 (2008)

    Google Scholar 

  7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. Ser B (Methodol), 1–38 (1977)

    Google Scholar 

  8. Ertoz, L., Steinbach, M., Kumar, V.: A new shared nearest neighbor clustering algorithm and its applications. In: 2nd International Conference on Data Mining, Clustering High Dimensional Data and its Applications, pp. 105–115. SIAM (2002)

    Google Scholar 

  9. Ertöz, L., Steinbach, M., Kumar, V.: Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In: SDM, pp. 47–58. SIAM (2003)

    Google Scholar 

  10. Guha, S., Rastogi, R., Shim, K.: CURE: an efficient clustering algorithm for large databases. In: ACM SIGMOD Record, vol. 27, pp. 73–84. ACM (1998)

    Google Scholar 

  11. Hinneburg, A., Keim, D.A.: An efficient approach to clustering in large multimedia databases with noise. In: Proceedings of KDD’98, pp. 58–65 (1998)

    Google Scholar 

  12. Hinneburg, A., Keim, D.A.: Optimal grid-clustering: towards breaking the curse of dimensionality in high-dimensional clustering. In: Proceedings of the 25th International Conference on Very Large Data Bases VLDB’99, pp. 506–517 (1999)

    Google Scholar 

  13. Januzaj, E., Kriegel, H.P., Pfeifle, M.: Dbdc: density based distributed clustering. In: Advances in Database Technology—EDBT 2004, Lecture Notes in Computer Science, vol. 2992, pp. 88–105 (2004)

    Google Scholar 

  14. Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared near neighbors. IEEE Trans. Comput. C 22(11), 1025–1034 (1973)

    Google Scholar 

  15. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k-means clustering. In: Proceedings of the Eighteenth Annual Symposium on Computational Geometry, pp. 10–18. ACM (2002)

    Google Scholar 

  16. Kim, W.: Parallel clustering algorithms: survey (2009). http://www.cs.gsu.edu/~wkim/indexfiles/SurveyParallelClustering.pdf

  17. Liu, Y., Guo, Q., Yang, L., Li, Y.: Research on incremental clustering. In: 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), 2012, pp. 2803–2806 (April 2012)

    Google Scholar 

  18. Moreira, G., Santos, M.Y., Moura-Pires, J.: SNN input parameters: how are they related? In: International Conference on Parallel and Distributed Systems (ICPADS), pp. 492–497. IEEE (2013)

    Google Scholar 

  19. Ng, R.T., Jiawei, H.: CLARANS: a method for clustering objects for spatial data mining. IEEE Trans. Knowl. Data Eng. 14(5), 1003–1016 (2002)

    Article  Google Scholar 

  20. Olson, C.F.: Parallel algorithms for hierarchical clustering. Parallel Comput. 21(8), 1313–1325 (1995)

    Article  MathSciNet  Google Scholar 

  21. Rokach, L., Maimon, O.: Clustering methods. In: Data Mining and Knowledge Discovery Handbook, pp. 321–352. Springer (2005)

    Google Scholar 

  22. Wikipedia.: Approximation algorithm, online (2015). Accessed June 2015

    Google Scholar 

  23. Xu, X., Ester, M., Kriegel, H.P., Sander, J.: A distribution-based clustering algorithm for mining in large spatial databases. In: Proceedings of 14th International Conference on Data Engineering, 1998, pp. 324–331. IEEE (1998)

    Google Scholar 

  24. Yadav, P.K., Pandey, S., Samal, M., Mohanty, S.K.: Nearest neighbor-based clustering algorithm for large data sets. In: Bhatia, S., Tiwari, S., Mishra, K., Trivedi, M. (eds.) Advances in Computer Communication and Computational Sciences. Advances in Intelligent Systems and Computing, vol. 760. Springer, Singapore (2018)

    Google Scholar 

  25. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: ACM SIGMOD Record, vol. 25, pp. 103–114. ACM (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sraban Kumar Mohanty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pandey, S., Samal, M., Mohanty, S.K. (2020). An SNN-DBSCAN Based Clustering Algorithm for Big Data. In: Pati, B., Panigrahi, C., Buyya, R., Li, KC. (eds) Advanced Computing and Intelligent Engineering. Advances in Intelligent Systems and Computing, vol 1082. Springer, Singapore. https://doi.org/10.1007/978-981-15-1081-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1081-6_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1080-9

  • Online ISBN: 978-981-15-1081-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics