Skip to main content

Force Tracking Control of Nonlinear Active Suspension System with Hydraulic Actuator Dynamic

  • Conference paper
  • First Online:
Book cover Methods and Applications for Modeling and Simulation of Complex Systems (AsiaSim 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1094))

Included in the following conference series:

  • 845 Accesses

Abstract

This paper delivers findings on optimal control studies of two degree of freedom quarter car model. Nonlinear active suspension quarter car model is used which considering the strong nonlinearities of hydraulic actuator. The investigation on the benefit of using Sliding Mode Control as force tracking controller with the utilization of Particle Swarm Optimization is done in this paper. The controller is designed to improved trade-off performance between ride comfort and road handling ability. Comparison between proposed controller with PID control and conventional suspension system showed that performance of the proposed controller is significantly improved. Results illustrated via simulation runs using MATLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agharkakli, A., Sabet, G.S., Barouz, A.: Simulation and analysis of passive and active suspension system using quarter car model for different road profile. Int. J. Eng. Trends Technol. 3(5), 636–644 (2012)

    Google Scholar 

  2. Kuber, C.: Modelling simulation and control of an active suspension system. J. Impact Factor Int. J. Mech. Eng. Technol. 5(11), 66–75 (2014)

    Google Scholar 

  3. Akbari, E., Farsadi, M.: Observer design for active suspension system using sliding mode control. In: 2010 IEEE SCOReD, pp. 13–14 (2010)

    Google Scholar 

  4. Wen, S., Chen, M.Z.Q., Zeng, Z., Yu, X., Huang, T.: Fuzzy control for uncertain vehicle active suspension systems via dynamic sliding-mode approach. IEEE Trans. Syst. Man Cybern. Syst. 47(1), 24–32 (2017)

    Article  Google Scholar 

  5. Sam, Y., Osman, J.H.S., Ghani, M.R.Abd.: Sliding mode control of active suspension system. J. Teknol. 37(1), 1–10 (2002)

    Google Scholar 

  6. Ismail, M.F., Peng, K., Hamzah, N., Sam, Y.M., Aripin, M.K., Che Hasan, M.H.: A linear model of quarter car active suspension system using composite nonlinear feedback control. In: 2012 IEEE Student Conference on Research and Development (SCOReD), pp. 98–103 (2012)

    Google Scholar 

  7. Das, M.: Designing optimal controller for linear multi-input multi-output uncertain systems via second order sliding mode. Int. J. Electr. Electron. Comput. Syst. 7(3), 290–298 (2018)

    Google Scholar 

  8. Alleyne, A., Hedrick, J.K.: Nonlinear adaptive control of active suspensions. IEEE Trans. Control Syst. Technol. 3(1), 94–101 (1995)

    Article  Google Scholar 

  9. Alleyne, A., Neuhaus, P.D., Hedrick, J.K.: Application of nonlinear control theory to electronically controlled suspensions. Veh. Syst. Dyn. 22(5–6), 309–320 (1993)

    Article  Google Scholar 

  10. Chen, P., Huang, A.: Adaptive sliding control of active suspension systems with uncertain hydraulic actuator dynamics. Veh. Syst. Dyn. 44(5), 357–368 (2006)

    Article  Google Scholar 

  11. Sam, Y.M., Hudha, K.: Modelling and force tracking control of hydraulic actuator for an active suspension system. In: 2006 1ST IEEE Conference on Industrial Electronics and Applications, pp. 1–6 (2006)

    Google Scholar 

  12. Hashemipour, H., Model, A.N.: Nonlinear optimal control of vehicle active suspension considering actuator dynamics. Int. J. Mach. Learn. Comput. 2(4), 355–359 (2012)

    Article  Google Scholar 

  13. Li, X., Zhu, Z.-C., Rui, G.-C., Cheng, D., Shen, G., Tang, Y.: Force loading tracking control of an electro-hydraulic actuator based on a nonlinear adaptive fuzzy backstepping control scheme. Symmetry (Basel) 10, 155 (2018)

    Article  Google Scholar 

  14. Pedro, J.O., Dangor, M., Dahunsi, O.A., Ali, M.M.: Intelligent feedback linearization control of nonlinear electrohydraulic suspension systems using particle swarm optimization. Appl. Soft Comput. J. 24, 50–62 (2014)

    Article  Google Scholar 

  15. Dahunsi, A.: Neural network-based model predictive control of a servo-hydraulic vehicle suspension system. In: IEEE AFRICON, pp. 5–10, September 2009

    Google Scholar 

  16. Shafie, A.A.: Active vehicle suspension control using electro hydraulic actuator on rough road terrain. J. Adv. Res. Appl. Mech. 9(1), 15–30 (2015)

    Google Scholar 

  17. Ghazali, R., Paharudin, M., Sam, Y.: Intelligent controller design for a nonlinear quarter car active suspension with electro-hydraulic actuator. J. Eng. Sci. Technol. 12, 39–51 (2017)

    Google Scholar 

  18. Gholamreza Vossoughi, M., Donath, M.: Dynamic feedback linearization for electrohydraulically actuated control systems. J. Dyn. Syst. Meas. Control 117, 468–477 (1995)

    Article  Google Scholar 

  19. Lin, J., Wang, X.: Advanced Sliding Mode Control for Mechanical Systems: Design, Analysis and MATLAB Simulation, 1st edn. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20907-9

    Book  Google Scholar 

  20. Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40(1), 2–22 (1993)

    Article  Google Scholar 

  21. Chamseddine, A., Raharijaona, T., Noura, H.: Sliding mode control applied to active suspension using nonlinear full vehicle and actuator dynamics. In: Proceedings of the 45th IEEE Conference on Decision and Control Manchester Grand Hyatt Hotel, pp. 3597–3602 (2006)

    Google Scholar 

  22. Xiao, L., Zhu, Y.: Sliding-mode output feedback control for active suspension with nonlinear actuator dynamics. J. Vib. Control 21(14), 2721–2738 (2015)

    Article  Google Scholar 

  23. Bai, R., Guo, D.: Sliding-mode control of the active suspension system with the dynamics of a hydraulic actuator. Complexity 2018, 6 pages (2018). Article ID 5907208

    Google Scholar 

  24. Sam, Y.M., Suaib, N.M.: Modeling and control of active suspension. J. Mek. 26, 119–128 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erliana Samsuria .

Editor information

Editors and Affiliations

Appendix

Appendix

See Table 2.

Table 2. System parameters in nonlinear Quarter Car model [17]

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Samsuria, E., Sam, Y.M., Hassan, F. (2019). Force Tracking Control of Nonlinear Active Suspension System with Hydraulic Actuator Dynamic. In: Tan, G., Lehmann, A., Teo, Y., Cai, W. (eds) Methods and Applications for Modeling and Simulation of Complex Systems. AsiaSim 2019. Communications in Computer and Information Science, vol 1094. Springer, Singapore. https://doi.org/10.1007/978-981-15-1078-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1078-6_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1077-9

  • Online ISBN: 978-981-15-1078-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics