Skip to main content

Characterization and Mechanical Properties of 2024/Y2O3 Composite Developed by Stir Rheocasting

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Semi-solid cast 2024 matrix composites reinforced with 1.5, 2.5, and 3.5 wt% Y2O3 particles were developed using vertical muffle furnace equipped with a mechanical stirrer. The composites were successfully developed, and their morphological investigation showed reinforcement particles distribution was fair. The properties of the developed composites improved significantly with an increase in the Y2O3 particles in the alloy. The highest ultimate tensile and yield strengths achieved were 294 MPa and 178 MPa respectively corresponding to the 2024/1.5 wt% Y2O3 composite. 34 and 45% increments in ultimate tensile and yield strengths were achieved for the 2024/1.5 wt% Y2O3 composite compared to the stirred rheocast sample without reinforcement. A decrease in the percentage elongation was observed with an increase in the amount of the yttria particles due to the particle agglomeration and porosity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhang X, Sun J, Wang M, Zhang Y, Ma N, Wang H (2015) Improvement of yttrium on the hot tearing susceptibility of 6TiB2/Al-5Cu composite. J Rare Earths 33:1335–1340. https://doi.org/10.1016/S1002-0721(14)60566-4

    Article  Google Scholar 

  2. Pan FS, Chen MB, Wang JF, Peng J, Tang AT (2008) Effects of yttrium addition on microstructure and mechanical properties of as-extruded AZ31 magnesium alloys. Trans Nonferrous Met Soc China 18:s1–s6

    Article  Google Scholar 

  3. Wang Y, Guan S, Zeng X, Ding W (2006) Effects of RE on the microstructure and mechanical properties of Mg-8Zn-4Al magnesium alloy. Mater Sci Eng A 416:109–118. https://doi.org/10.1016/j.msea.2005.09.104

    Article  Google Scholar 

  4. Rosalbino F, Angelini E, De Negri S, Saccone A, Delfino S (2003) Influence of the rare earth content on the electrochemical behavior of Al-Mg-Er alloys. Intermetallics 11:435–441. https://doi.org/10.1016/S0966-9795(03)00016-5

    Article  Google Scholar 

  5. Dong Y, Lin XP, Xu R, Zheng RG, Fan ZB, Liu SJ, Wang Z (2014) Microstructure and compression deformation behavior in the quasicrystal-reinforced Mg-8Zn-1Y alloy solidified under super-high pressure. J Rare Earths 32:1048–1055. https://doi.org/10.1016/S1002-0721(14)60182-4

    Article  Google Scholar 

  6. Huang WX, Yan H (2014) Preparation and theoretic study of semi-solid Al2Y/AZ91 magnesium matrix composites slurry by ultrasonic vibration. J Rare Earths 32:573–579. https://doi.org/10.1016/S1002-0721(14)60110-1

    Article  Google Scholar 

  7. Li M, Li XG, Zhang K, Li YJ, Ma ML, Shi GL, Yuan JW, Liu JB (2015) Effects of isothermal homogenization on microstructure evolution of Mg-7Gd-5Y-1MM-0.5Zr alloy. J Rare Earths 33:439–444. https://doi.org/10.1016/S1002-0721(14)60438-5

    Article  Google Scholar 

  8. Li KJ, Li QN, Jing XT, Chen J, Zhang XY (2009) Effects of Sb, Sm, and Sn additions on the microstructure and mechanical properties of Mg-6Al-1.2Y-0.9Nd alloy. Rare Met 28:516–522. https://doi.org/10.1007/s12598-009-0100-9

    Article  Google Scholar 

  9. Xiao W, Jia S, Wang J, Wu Y, Wang L (2008) Effects of cerium on the microstructure and mechanical properties of Mg-20Zn-8Al alloy. Mater Sci Eng A 474:317–322. https://doi.org/10.1016/j.msea.2007.04.008

    Article  Google Scholar 

  10. Zhang T, Li DYY (2001) Improvement in the resistance of aluminum with yttria particles to sliding wear in air and in a corrosive medium. Wear 251:1250–1256. https://doi.org/10.1016/S0043-1648(01)00774-8

    Article  Google Scholar 

  11. Yang WG, Koo CH (2003) Tensile properties of Mg-8Al-xRE alloys from 300 K to 673 K. Mater Trans 44:1029–1035. https://doi.org/10.2320/matertrans.44.1029

    Article  Google Scholar 

  12. Wu G, Fan Y, Gao H, Zhai C, Zhu YP (2005) The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D. Mater Sci Eng A 408:255–263. https://doi.org/10.1016/j.msea.2005.08.011

    Article  Google Scholar 

  13. Bouaeshi WB, Li DY (2007) Effects of Y2O3 addition on microstructure, mechanical properties, electrochemical behavior, and resistance to corrosive wear of aluminum. Tribol Int 40:188–199. https://doi.org/10.1016/j.triboint.2005.09.030

    Article  Google Scholar 

  14. Hassan SF (2011) Effect of primary processing techniques on the microstructure and mechanical properties of nano-Y2O3 reinforced magnesium nanocomposites. Mater Sci Eng A 528:5484–5490. https://doi.org/10.1016/j.msea.2011.03.063

    Article  Google Scholar 

  15. Vembu V, Ganesan G (2015) Heat treatment optimization for tensile properties of 8011 Al/15% SiCp metal matrix composite using response surface methodology. Defence Technol 11:390–395. https://doi.org/10.1016/j.dt.2015.03.004

    Article  Google Scholar 

  16. Nagaraj N, Mahendra KV, Nagaral M (2018) Investigations on mechanical behaviour of micro graphite particulates reinforced Al-7Si alloy composites. In: IOP conference series: materials science and engineering, vol 310, p 012131. https://doi.org/10.1088/1757-899x/310/1/012131

  17. Yoshida M, Takeuchi S, Pan J, Sasaki G, Fuyama N, Fuj T, Fukunaga H (1999) Preparation and characterization of aluminum borate whisker reinforced magnesium alloy composites by semi-solid process. Adv Compos Mater 8:259–268. https://doi.org/10.1163/156855199X00254

    Article  Google Scholar 

  18. Elsharkawi EA, Pucella G, Côte P, Chen XG (2014) Rheocasting of semi-solid Al359/20% SiC metal matrix composite using SEED process. Can Metall Q 53:160–168. https://doi.org/10.1179/1879139513Y.0000000120

    Article  Google Scholar 

  19. Kumar S, Das P, Tiwari SK, Mondal MK, Bera S, Roy H, Samanta SK (2015) Study of microstructure evolution during semi-solid processing of an in-situ Al alloy composite. Mater Manuf Process 30:356–366. https://doi.org/10.1080/10426914.2014.952040

    Article  Google Scholar 

  20. Curle UA, Ivanchev L (2010) Wear of semi-solid rheocast SiCp/Al metal matrix composites. Trans Nonferrous Met Soc China 20:852–856

    Article  Google Scholar 

  21. Nagaral M, Kalgudi S, Auradi V, Kori SA (2018) Mechanical characterization of ceramic nano B4C Al2618 alloy composites synthesized by semi-solid state processing. Trans Indian Ceram Soc 77:146–149. https://doi.org/10.1080/0371750X.2018.1506363

    Article  Google Scholar 

  22. Flemings MC (1991) Behavior of metal alloys in the semisolid state. Metall Trans A 22:957–981. https://doi.org/10.1007/BF02661090

    Article  Google Scholar 

  23. Rajan HM, Ramabalan S, Dinaharan I, Vijay SJ (2013) Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites. Mater Des 44:438–445. https://doi.org/10.1016/j.matdes.2012.08.008

    Article  Google Scholar 

  24. Natori K, Utsunomiya H, Tanaka T (2017) Improvement in formability of semi-solid cast hypoeutectic Al-Si alloys by equal-channel angular pressing. J Mater Process Technol 240:240–248. https://doi.org/10.1016/j.jmatprotec.2016.09.022

    Article  Google Scholar 

  25. Yigezu BS, Mahapatra MM, Jha PK (2013) Influence of reinforcement type on microstructure, hardness, and tensile properties of an aluminum alloy metal matrix composite. J Miner Mater Charact Eng 1:124. https://doi.org/10.4236/jmmce.2013.14022

    Article  Google Scholar 

  26. Chen F, Chen Z, Mao F, Wang T, Cao Z (2015) TiB2 reinforced aluminum based in situ composites fabricated by stir casting. Mater Sci Eng A 625:357–368. https://doi.org/10.1016/j.msea.2014.12.033

    Article  Google Scholar 

  27. Lu L, Lai MO, Chen FL (1997) Al-4 wt% Cu composite reinforced with in-situ TiB2 particles. Acta Mater 45:4297–4309. https://doi.org/10.1016/S1359-6454(97)00075-X

    Article  Google Scholar 

  28. Selvam JDR, Smart DR, Dinaharan I (2013) Microstructure and some mechanical properties of fly ash particulate reinforced AA6061 aluminum alloy composites prepared by compocasting. Mater Des 49:28–34. https://doi.org/10.1016/j.matdes.2013.01.053

    Article  Google Scholar 

Download references

Acknowledgements

The authors highly acknowledged Welding Lab Research laboratory, Department of Mechanical and Industrial Engineering and Institute Instrumentation Centre, IIT Roorkee, for providing the facilities and support to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semegn Cheneke Lemessa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lemessa, S.C., Karunakar, D.B. (2020). Characterization and Mechanical Properties of 2024/Y2O3 Composite Developed by Stir Rheocasting. In: Kumar, H., Jain, P. (eds) Recent Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-1071-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1071-7_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1070-0

  • Online ISBN: 978-981-15-1071-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics