Skip to main content

A Comprehensive Review on Microfluidics Technology and its Applications

  • Conference paper
  • First Online:
Recent Advances in Mechanical Engineering

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

In modern fields of science, the urge for analysing the characterization of fluid flow as well as fabricating micro level devices to facilitate fluid flow is increasing noticeably. The technology that provides detailed information about the aforesaid concepts is referred to as microfluidics. Microfluidics, in substance, considers the flow in the microchannels. It proved its mettle exclusively in the field of medical diagnostics. In this paper, the prerequisites such as molecular analysis, biodefence, molecular biology and microelectronics which emphasized the need for microfluidic technology are reported, and the microfluidics technology is reviewed in view of materials used fabrication methodologies and applications. This review article finally intends to look out for the alternative material such as biocompatible metal rather than plastics, to have a better production rate. In recent times, the research works on microfluidics are increasing significantly, and this article will be useful for future research work on microfluidics area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitesides GM (2011) What comes next? Lab Chip 11:191–193. https://doi.org/10.1039/c0lc90101f

  2. Haber C (2006) Microfluidics in commercial applications; an industry perspective. Lab Chip 6:1118–1121. https://doi.org/10.1039/b610250f

  3. Abgrall P, Gué AM (2007) Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review

    Google Scholar 

  4. Whitesides GM (2006) The origins and the future of microfluidics

    Google Scholar 

  5. Ohno K, Tachikawa K, Manz A (2008) Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis 29:4443–4453. https://doi.org/10.1002/elps.200800121

  6. Franke TA, Wixforth A (2008) Microfluidics for miniaturized laboratories on a chip. ChemPhysChem 9:2140–2156. https://doi.org/10.1002/cphc.200800349

  7. Liu C (2010) Rapid fabrication of microfluidic chip with three-dimensional structures using natural lotus leaf template. Microfluid Nanofluidics 9:923–931. https://doi.org/10.1007/s10404-010-0615-2

  8. Wu M-H, Huang S-B, Lee G-B (2010) Microfluidic cell culture systems for drug research. Lab Chip 10:939. https://doi.org/10.1039/b921695b

  9. Bhagat AAS, Bow H, Hou HW, Tan SJ, Han J, Lim CT (2010) Microfluidics for cell separation. Med Biol Eng Comput 48:999–1014. https://doi.org/10.1007/s11517-010-0611-4

  10. Cheng S, Wu Z (2011) A microfluidic, reversibly stretchable, large-area wireless strain sensor. Adv Funct Mater 21:2282–2290. https://doi.org/10.1002/adfm.201002508

  11. Chen J, Li J, Sun Y (2012) Microfluidic approaches for cancer cell detection, characterization, and separation. Lab Chip 12:1753–1767. https://doi.org/10.1039/c2lc21273k

  12. Greener J, Tumarkin E, Debono M, Dicks AP, Kumacheva E (2012) Education: a microfluidic platform for university-level analytical chemistry laboratories. Lab Chip 12:696–701. https://doi.org/10.1039/c2lc20951a

  13. Cate DM, Adkins JA, Mettakoonpitak J, Henry CS (2015) Recent developments in paper-based microfluidic devices. Anal Chem 87:19–41. https://doi.org/10.1021/ac503968p

  14. Steinhubl SR, Muse ED, Topol EJ (2015) The emerging field of mobile health. Sci Transl Med 7:1–6. https://doi.org/10.1126/scitranslmed.aaa3487

  15. Duarte LC, De Carvalho TC, Lobo-Júnior EO, Abdelnur PV, Vaz BG, Coltro WKT (2016) 3D printing of microfluidic devices for paper-assisted direct spray ionization mass spectrometry. Anal Methods 8:496–503. https://doi.org/10.1039/c5ay03074a

  16. Hediger S, Fontannaz J, Sayah A, Hunziker W, Gijs MAM (2000) Biosystem for the culture and characterisation of epithelial cell tissues. Sensors Actuators B Chem 63:63–73. https://doi.org/10.1016/S0925-4005(00)00292-6

  17. Lee S, Aranyosi AJ, Wong MD, Hong JH, Lowe J, Chan C, Garlock D, Shaw S, Beattie PD, Kratochvil Z, Kubasti N, Seagers K, Ghaffari R, Swanson CD (2016) Flexible opto-electronics enabled microfluidics systems with cloud connectivity for point-of-care micronutrient analysis. Biosens Bioelectron 78:290–299. https://doi.org/10.1016/j.bios.2015.11.060

  18. Cardoso S, Leitao DC, Dias TM, Valadeiro J, Silva MD, Chicharo A, Silverio V, Gaspar J, Freitas PP ()2017 Challenges and trends in magnetic sensor integration with microfluidics for biomedical applications. J Phys D Appl Phys 50:aa66ec. https://doi.org/10.1088/1361-6463/aa66ec

  19. Epifania R, Soares RRG, Pinto IF, Chu V, Conde JP (2018) Capillary-driven microfluidic device with integrated nanoporous microbeads for ultrarapid biosensing assays. Sensors Actuators B Chem 265:452–458. https://doi.org/10.1016/j.snb.2018.03.051

  20. Ven K, Vanspauwen B, Pérez-Ruiz E, Leirs K, Decrop D, Gerstmans H, Spasic D, Lammertyn J (2018) Target confinement in small reaction volumes using microfluidic technologies: a smart approach for single-entity detection and analysis. ACS Sensors 3:264–284. https://doi.org/10.1021/acssensors.7b00873

  21. Alizadehgiashi M, Gevorkian A, Tebbe M, Seo M, Prince E, Kumacheva E (2018) 3D-printed microfluidic devices for materials science. Adv Mater Technol 1800068:1–8. https://doi.org/10.1002/admt.201800068

  22. Cost L, Free P (2018) Multidimensional paper networks : a new review. J Indian Inst. Si. xxx:1–34 https://doi.org/10.1007/s41745-018-0077-1

  23. Rolland JP, Van Dam RM, Schorzman DA, Quake SR, DeSimone JM (2004) Solvent-resistant photocurable [ldquo]liquid Teflon[rdquo] for microfluidic device fabrication. J Am Chem Soc 126:2322–2323. https://doi.org/10.1021/ja040811t

  24. Vulto P, Glade N, Altomare L, Bablet J, Del Tin L, Medoro G, Chartier I, Manaresi N, Tartagni M, Guerrieri R (2005) Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips. Lab Chip 5:158–162. https://doi.org/10.1039/b411885e

  25. Heng Q, Tao C, Tie-chuan Z (2006) Surface roughness analysis and improvement of micro-fluidic channel with excimer laser. Microfluid Nanofluidics 2:357–360. https://doi.org/10.1007/s10404-006-0078-7

  26. Salk N, Seemann T, Rota A, Schlüter M, Hoffmann M, Harms C (2007) New functions for microfluidic components by using micro metal injection molding (μ-MIM). Chem Eng Commun 194:859–866. https://doi.org/10.1080/00986440701193886

  27. Grimes A, Breslauer DN, Long M, Pegan J, Lee LP, Khine M (2007) Shrinky-dink microfluidics: rapid generation of deep and rounded patterns. Lab Chip 8:170–172. https://doi.org/10.1039/b711622e

  28. Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390:89–111. https://doi.org/10.1007/s00216-007-1692-2

  29. Abdelgawad M, Wheeler AR (2008) Low-cost, rapid-prototyping of digital microfluidics devices. Microfluid Nanofluidics 4:349–355. https://doi.org/10.1007/s10404-007-0190-3

  30. Jáuregui AL, Siller HR, Rodríguez CA, Elías-Zúñiga A (2010) Evaluation of micromechanical manufacturing processes for microfluidic devices. Int J Adv Manuf Technol 48:963–972. https://doi.org/10.1007/s00170-009-2326-y

  31. Prentner S, Allen DM, Larcombe L, Marson S, Jenkins K, Saumer M (2010) Effects of channel surface finish on blood flow in microfluidic devices. Microsyst Technol 16:1091–1096. https://doi.org/10.1007/s00542-009-1004-1

  32. Ogilvie IRG, Sieben VJ, Floquet CFA, Zmijan R, Mowlem MC, Morgan H (2010) Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC. J Micromech Microeng 20. https://doi.org/10.1088/0960-1317/20/6/065016

  33. Waldbaur A, Rapp H, Länge K, Rapp BE (2011) Let there be chip—towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Anal Methods 3:2681–2716. https://doi.org/10.1039/c1ay05253e

  34. Suriano R, Kuznetsov A, Eaton SM, Kiyan R, Cerullo G, Osellame R, Chichkov BN, Levi M, Turri S (2011) Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels. Appl Surf Sci 257:6243–6250. https://doi.org/10.1016/j.apsusc.2011.02.053

  35. Wu J, Gu M (2011) Microfluidic sensing: state of the art fabrication and detection techniques. J Biomed Opt 16:080901. https://doi.org/10.1117/1.3607430

  36. Wu WI, Sask KN, Brash JL, Selvaganapathy PR (2012) Polyurethane-based microfluidic devices for blood contacting applications. Lab Chip 12:960–970. https://doi.org/10.1039/c2lc21075d

  37. Ren K, Zhou J, Wu H (2013) Materials for microfluidic chip fabrication. Acc Chem Res 46:2396–2406. https://doi.org/10.1021/ar300314s

  38. Nge PN, Rogers CI, Woolley AT (2013) Advances in micro fluidic materials. Integration, and Applications, Functions

    Google Scholar 

  39. Hoople GD, Rolfe DA, McKinstry KC, Noble JR, Dornfeld DA, Pisano AP (2014) Comparison of microscale rapid prototyping techniques for microfluidic applications. In: Volume 1: materials; micro and nano technologies; properties, applications and systems; sustainable manufacturing. ASME, p. V001T03A001

    Google Scholar 

  40. Lawanstiend D, Gatemala H, Nootchanat S, Eakasit S, Wongravee K, Srisa-Art M (2018) Microfluidic approach for in situ synthesis of nanoporous silver microstructures as on-chip SERS substrates. Sens. Actuators B Chem 270:466–474. https://doi.org/10.1016/j.snb.2018.05.051

  41. Martynova L, Locascio LE, Gaitan M, Kramer GW, Christensen RG, Maccrehan WA (1997) Fabrication of plastic microfluid channels by imprinting methods. Anal Chem 69:4783–4789. https://doi.org/10.1021/ac970558y

  42. Fu AY, Chou HP, Spence C, Arnold FH, Quake SR (2002) An integrated microfabricated cell sorter. Anal Chem 74:2451–2457. https://doi.org/10.1021/ac0255330

  43. Mcdonald JC, Chabinyc ML, Metallo SJ, Anderson JR, Stroock AD, Whitesides GM (2002) Prototyping of microfluidic devices in poly (dimethylsiloxane) using solid-object printing. Anal Chem 74:1537–1545. https://doi.org/10.1021/ac010938q

  44. Hira S (2007) Micro-cutting of polytetrafluoroetylene (ptfe) for application of micro-fluidic devices. Key Eng Mater 329:577–582. https://doi.org/10.4028/www.scientific.net/KEM.329.577

  45. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: micro fluidic paper-based analytical devices. Anal Chem 82:3–10. https://doi.org/10.1007/s10337-013-2413-y

  46. Wilson ME, Kota N, Kim Y, Wang Y, Stolz DB, Leduc PR, Ozdoganlar OB (2011) Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. Lab Chip 11:1550–1555. https://doi.org/10.1039/c0lc00561d

  47. Schubert A, Groß S, Schulz B, Eckert U (2011) Sequential combination of micro-milling and laser structuring for manufacturing of complex micro-fluidic structures. Phys Procedia 12:221–229. https://doi.org/10.1016/j.phpro.2011.03.127

  48. Monroy-Vázquez KP, Attanasio A, Ceretti E, Siller HR, Hendriqchs-Troeglen NJ, Giardini C (2013) Evaluation of superficial and dimensional quality features in metallic micro-channels manufactured by micro-end-milling. Materials (Basel) 6:1434–1451. https://doi.org/10.3390/ma6041434

  49. Au AK, Lee W, Folch A (2014) Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab Chip 14:1294–1301. https://doi.org/10.1039/c3lc51360b

  50. Zhou L, Zhuang G, Li G (2018) A facile method for the fabrication of glass-PDMS-glass sandwich microfluidic devices by sacrificial molding. Sens Actuators B Chem 261:364–371. https://doi.org/10.1016/J.SNB.2018.01.158

  51. Matellan C, Del Río Hernández AE (2018) Cost-effective rapid prototyping and assembly of poly(methyl methacrylate) microfluidic devices. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-25202-4

  52. Wang S, Yin Y, Hu C, Rezai P (2018) 3D integrated circuit cooling with microfluidics. Micromachines 9:1–14. https://doi.org/10.3390/mi9060287

  53. Gao M, Wen L, He C, Chen Y, Liu C, Fu X, Huang S (2018) Technology, A.: applications of microfluidics in quantitative biology. Biotechnol J 13

    Google Scholar 

  54. Khan SM, Gumus A, Nassar JM, Hussain MM (2018) CMOS enabled microfluidic systems for healthcare based applications. Adv Mater 30:1–26. https://doi.org/10.1002/adma.201705759

  55. Gao R, Wu Y, Huang J, Song L, Qian H, Song X, Cheng L, Wang R, Luo L, Zhao G, Yu L (2019) Development of a portable and sensitive blood serum test system using LED-based absorption photometry and pump-free microfluidic technology. Sens. Actuators B Chem 286:86–93. https://doi.org/10.1016/j.snb.2019.01.065

  56. Allioux F-M, Kapruwan P, Milne N, Kong L, Fattaccioli J, Chen Y, Dumée LF (2018) Electro-capture of heavy metal ions with carbon cloth integrated microfluidic devices. Sep Purif Technol 194:26–32. https://doi.org/10.1016/J.SEPPUR.2017.10.064

  57. Malbec R, Cacheux J, Cordelier P, Leichlé T, Joseph P, Bancaud A (2018) Microfluidics for minute DNA sample analysis: open challenges for genetic testing of cell-free circulating DNA in blood plasma. Micro Nano Eng 1:25–32. https://doi.org/10.1016/J.MNE.2018.10.003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su. Venkatesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Venkatesan, S., Jerald, J., Asokan, P., Prabakaran, R. (2020). A Comprehensive Review on Microfluidics Technology and its Applications. In: Kumar, H., Jain, P. (eds) Recent Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-1071-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1071-7_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1070-0

  • Online ISBN: 978-981-15-1071-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics