Skip to main content

Wideband Designs of Gap-Coupled Rectangular Microstrip Antenna Using Parasitic C-Shaped Patches

  • Conference paper
  • First Online:
Proceedings of International Conference on Wireless Communication

Abstract

Wideband gap-coupled designs of proximity-fed rectangular microstrip antenna along with variants of C-shaped patches are presented. The design of rectangular microstrip antenna yields a bandwidth of 427 MHz (33%) with peak gain of 7.64 dBi. The bandwidth and gain are enhanced by using multiresonator concept with C-shaped parasitic patches. Optimum result in gap-coupled structure with two layers of two and four C-shaped patches with bandwidth of 867 MHz (60%) shows peak gain of 9.76 dBi is realized. The proposed design is simple to implement, and the experimental results of fabricated prototype antenna show close agreement with the simulated results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wi SH, Lee YS, Yook JG (2007) Wideband microstrip patch antenna with U-shaped parasitic elements (2007) Wideband microstrip patch antenna with U-shaped parasitic element. IEEE Trans Antennas Propag 55(4)

    Article  Google Scholar 

  2. Abraham J, Mathew T, Aanandan CK (2016) A novel proximity fed gap coupled microstrip patch array for wireless applications. Progress Electromagnet Res 61:171–178

    Article  Google Scholar 

  3. Guo YX, Luk XM, Lee KF (2001) L-probe proximity fed annual ring microstrip antennas. IEEE Trans Antennas Propag 49(1):19–21

    Article  Google Scholar 

  4. Kumar G, Ray KP (2003) Broadband microstrip antennas, 1st edn. Artech House, USA

    Google Scholar 

  5. Wong KL (2002) Compact and broadband microstrip antennas, 1st edn. Wiley, New York, USA

    Book  Google Scholar 

  6. Wang H, Huang XB, Fang DG (2008) A single layer wideband U-slot microstrip patch antenna array. IEEE Antennas Wireless Propag Lett 7:9–12

    Article  Google Scholar 

  7. Wincza K, Gruszczynski S (2011) Microstrip antenna arrays fed by a series-parallel slot-coupled feeding network. IEEE Antennas Wireless Propag Lett 10:991–994

    Article  Google Scholar 

  8. Encinar JA (2001) Design of two-layer printed reflectarray using patches of variable size. IEEE Trans Antennas Propag 49(10):1403–1410

    Article  MathSciNet  Google Scholar 

  9. Bhide R, Kumar G (2010) Circularly polarized space-fed microstrip antenna arrays. Microw Opt Technol Lett 52(10):2221–2223

    Article  Google Scholar 

  10. Bhide R, Kumar G (2010) Equivalence of space-fed microstrip antenna array with horn antenna. Microw Opt Technol Lett 52(5):1180–1183

    Article  Google Scholar 

  11. Vaidya AR, Gupta RK, Mishra SK, Mukherjee J (2012) High-gain low side lobe level Fabry Perot cavity antenna with feed patch array. Progress Electromagnet Res 28:223–238

    Article  Google Scholar 

  12. DeJean GR, Thai TT, Nikolaou S, Tentzeris MM (2007) Design of millimeter wave microstrip reflectarray design and analysis of microstrip bi-yagi and quad-yagi array for WLAN applications. IEEE Antennas Wireless Propag Lett 6:224–248

    Google Scholar 

  13. Liang Z, Liu J, Zhang Y, Long Y (2015) A novel microstrip quasi Yagi array antenna with annular sector directors. IEEE Trans Antennas Propag 63(10):4524–4529

    Article  MathSciNet  Google Scholar 

  14. Luo Y, Chu QX, Bornemann J (2017) A differential-fed Yagi-Uda antenna with enhanced bandwidth via addition of parasitic resonator. Microw Opt Technol Lett 59(1):156–159

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay B. Deshmukh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deshmukh, S.B., Deshmukh, A.A. (2020). Wideband Designs of Gap-Coupled Rectangular Microstrip Antenna Using Parasitic C-Shaped Patches. In: Vasudevan, H., Gajic, Z., Deshmukh, A. (eds) Proceedings of International Conference on Wireless Communication . Lecture Notes on Data Engineering and Communications Technologies, vol 36. Springer, Singapore. https://doi.org/10.1007/978-981-15-1002-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1002-1_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1001-4

  • Online ISBN: 978-981-15-1002-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics