Skip to main content

Host–Polyembryonic Parasitoid Interactions

  • Chapter
  • First Online:
Polyembryonic Insects

Part of the book series: Entomology Monographs ((ENTMON))

  • 323 Accesses

Abstract

Entry into the host body is a prerequisite for successful completion of the endoparasitoid life cycle. Most endoparasitoids achieve this by laying eggs directly inside the body cavity of the host. In most braconid and ichneumonid parasitoids, the ovipositor is inserted within the host hemocoel to lay eggs, and the hatched larvae grow and develop rapidly inside the host hemolymph as host development advances and finally consume the host tissues, leading to death of the host, which is why parasitic wasps are usually referred to as “parasitoids.” By contrast, egg–larval endoparasitoids, such as those in the genus Ascogaster (family Braconidae), lay their eggs inside the host embryo or alternatively in the yolk of the host egg, following which the newly hatched larvae enter the host embryo. However, the polyembryonic egg–larval endoparasitoid Copidosoma floridanum cannot employ this strategy due to its prolonged morula stage, so this species has evolved a novel approach for entering the host body that involves tissue-compatible invasion by the motile morula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe Y, Koyama K (1991) Embryonic development and selective oviposition of a dryinid wasp, Haplogonatopus atratus Esaki et Hashimoto (Hymenoptera: Dryinidae). Jpn J Appl Entomol Zool 35:57–63

    Article  Google Scholar 

  • Akai H, Sato S (1971) An ultrastructural study of the haemopoietic organs of the silkworm, Bombyx mori. J Insect Physiol 17:1665–1676

    Article  Google Scholar 

  • Ali R, Kim Y (2012) A novel polydnaviral gene family, BEN, and its immunosuppressive function in larvae of Olutella xylostella parasitized by Cotesia plutellae. J Invertebr Pathol 110:389–397

    Article  CAS  Google Scholar 

  • Ali R, Lim J, Kim Y (2015) Transcriptome of a specialized extra-embryonic cell, teratocyte, and its host immunosuppressive role revealed by ex vivo RNA interference. Insect Mol Biol 24:13–28

    Article  CAS  PubMed  Google Scholar 

  • Arnold JW, Hinks CF (1976) Haemopoiesis in Lepidoptera 1. The multiplication of circulating haemocytes. Can J Zool 54:1003–1012

    Article  Google Scholar 

  • Asgali S, Schmidt O, Theopold U (1997) A polydnavirus-encoded protein of an endoparasitoid wasp is an immune suppressor. J Gen Virol 78:3061–3070

    Article  Google Scholar 

  • Asgali S, Zhang G, Zareie R, Schmidt O (2003) A serine proteinase homolog venom protein from an endoparasitoid wasp inhibits melanization of the host hemolymph. Insect Biochem Mol Biol 33:1017–1024

    Article  CAS  Google Scholar 

  • Asgari S, Rivers DB (2011) Venom proteins from endoparasitoid wasps and their role in the host-parasite interactions. Annu Rev Entomol 56:313–335

    Article  CAS  PubMed  Google Scholar 

  • Asgari S, Schmidt O (1994) Passive protection of eggs from the parasitoid, Cotesia rubecula, in the host, Pieris rapae. J Insect Physiol 40:789–795

    Article  Google Scholar 

  • Asgari S, Hellers M, Schmidt O (1996) Host haemocyte inactivation by an insect parasitoid: transient expression of a polydnavirus gene. J Gen Virol 77:2653–2662

    Article  CAS  PubMed  Google Scholar 

  • Asgari S, Theopold U, Wellby C, Schmidt O (1998) A protein with protective properties against the cellular defense reaction in insects. Proc Natl Acad Sci Am 95:3690–3695

    Article  CAS  Google Scholar 

  • Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844

    Article  CAS  PubMed  Google Scholar 

  • Baehrecke EH, Strand MR (1990) Embryonic morphology and growth of the polyembryonic parasitoid Copidosoma floridanum (Ashmead) (Hymenoptera: Encyrtidae). Int J Insect Morphol Embryol 19:165–175

    Article  Google Scholar 

  • Baehrecke EH, Aiken JM, Dover BA, Strand MR (1993) Ecdysteroid induction of embryonic morphogenesis in a parasitic wasp. Dev Biol 158:275–287

    Article  CAS  PubMed  Google Scholar 

  • Bai SF, Cai DZ, Li X, Chen XX (2009) Parasitic castration of Plutella xylostella larvae induced by polydnaviruses and venom of Cotesia vestalis and Diadegma semiclausum. Arch Insect Biochem Physiol 70:30–43

    Article  CAS  PubMed  Google Scholar 

  • Barratt BI, Evans AA, Stolz DB, Vinson SB, Easingwood R (1999) Virus-like particles in the ovaries of Microtonus oethiopoides Loan (Hymenoptera: Braconidae), a parasitoid of adult weevils (Coleoptera: Curculionidae). J Invertebr Pathol 73:182–188

    Article  CAS  PubMed  Google Scholar 

  • Barreau C, Touray M, Pimenta PF, Miller LH, Vernick KD (1995) Plasmodium gallinaceum: sporozoite invasion of Aedes aegypti salivary glands is inhibited by anti-gland antibodies and by lectins. Exp Parasitol 81:332–343

    Article  CAS  PubMed  Google Scholar 

  • Basio NAM, Kim Y (2005) A short review of teratocytes and their characters in Cotesia plutellae (Braconidae: Hymenoptera). J Asia Pac Entomol 8:211–217

    Article  Google Scholar 

  • Basseri HR, Tew IF, Ratcliffe NA (2002) Identification and distribution of carbohydrate moieties on the salivary glands of Rhodnius prolixus and their possible involvement in attachment/invasion by Trypanosoma rangeli. Exp Parasitol 100:226–234

    Article  CAS  PubMed  Google Scholar 

  • Bauer R, Loer B, Ostrowski K, Martini J, Weimbs A, Lechner H, Hoch M (2005) Intercellular communication: the Drosophila innexin multiprotein family of gap junction proteins. Chem Biol 12:515–526

    Article  CAS  PubMed  Google Scholar 

  • Beach RM, Todd JW (1986) Foliage consumption and larval development of parasitized and unparasitized soybean looper, Pseudoplusia includens [Lep.: Noctuidae], reared on a resistant soybean genotype and effects on an associated parasitoid, Copidosoma truncatellum [Hym.: Encyrtidae]. Entomophaga 31:237–242

    Article  Google Scholar 

  • Beaulaton J (1979) Hemocytes and hemocytopoiesis in silkworms. Biochem Mol Biol 61:157–164

    CAS  Google Scholar 

  • Beck M, Strand MR (2003) RNA interference silences Microplitis demolitor bracovirus genes and implicates glc1.8 in disruption of adhesion in infected host cells. Virology 314:521–535

    Article  CAS  PubMed  Google Scholar 

  • Beck M, Strand MR (2005) Glc1.8 from Microplitis demolitor bracovirus induces a loss of adhesion and phagocytosis in insect high five and S2 cells. J Virol 79:1861–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck M, Theopold U, Schmidt O (2000) Evidence for serine protease inhibitor activity in the ovarian calyx fluid of the endoparasitoid Venturia canescens. J Insect Physiol 46:1275–1283

    Article  CAS  PubMed  Google Scholar 

  • Beckage NE (1985) Endocrine interactions between endoparasitic insects and their hosts. Annu Rev Entomol 30:371–413

    Article  CAS  Google Scholar 

  • Beckage NE (1998) Modulation of immune responses to parasitoid by polydnavirus. Parasitology 116:S57–S64

    Article  PubMed  Google Scholar 

  • Beckage NE (2008) Insect immunology. Academic, Amsterdam, Boston

    Google Scholar 

  • Beckage NE, Gelman DB (2004) Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Annu Rev Entomol 49:299–330

    Article  CAS  PubMed  Google Scholar 

  • Beckage NE, Riddiford LM (1983) Growth and development of the endoparasitic wasp Apanteles congregatus: dependence on host nutritional status and parasite load. Physiol Entomol 8:231–241

    Article  Google Scholar 

  • Bedding RA (1967) Parasitic and free-living cycles in entomophagous nematodes of the genus Deladenus. Nature 214:174–175

    Article  CAS  PubMed  Google Scholar 

  • Bedding RA (1972) Biology of Deladenus siridicola (Neotylenchidae) an entomophagous–mycetophagous nematode parasitic in siricid wood-wasps. Nematologica 18:482–493

    Article  Google Scholar 

  • Bedwin O (1979) An insect glycoprotein: a study of the particles responsible for the resistance of the parasitoid’s egg to the defence reactions of its insect host. Proc R Soc B 205:271–286

    CAS  Google Scholar 

  • Beeman SC, Wilson ME, Bulla LA, Consigli RA (1983) Structural Characterization of the hemocytes of Plodia interpunctella. J Morphol 175:1–16

    Article  PubMed  Google Scholar 

  • Bendel-Stenzel M, Anderson R, Heasman J, Wylie C (1998) The origin and migration of primordial germ cells in the mouse. Semin Cell Dev Biol 9:393–400

    Article  CAS  PubMed  Google Scholar 

  • Bentin-Ley U, Horn T, Sjogren A, Sorensen S, Larsen JF, Hamberger L (2000) Ultrastructure of human blastocyst-endometrial interactions in vitro. J Reprod Fertil 120:337–350

    Article  CAS  PubMed  Google Scholar 

  • Bezier A, Louis F, Jancek S, Periquet G, Theze J, Gyapay G, Musset K, Lesobre J, Lenoble P, Dupuy C, Gundersen-Rindal D, Herniou EA, Drezen JM (2013) Functional endogenous viral elements in the genome of the parasitoid wasp Cotesia congregate: insights into the evolutionary dynamics of bracoviruses. Philos Trans R Soc B 368:20130047

    Article  Google Scholar 

  • Bhat S, Mettus RV, Ugen KE, Srikanthan V, Williams WV, Weiner DB (1993) The galactosyl ceramide/sulfatide receptor binding region of HIV-1 gp120 maps to amino acids 206-275. AIDS Res Hum Retroviruses 9:175–181

    Article  CAS  PubMed  Google Scholar 

  • Blaschuk OW, Sullivan R, David S, Pouliot Y (1990) Identification of a cadherin cell adhesion recognition sequence. Dev Biol 139:227–229

    Article  CAS  PubMed  Google Scholar 

  • Bonazzi M, Lecuit M, Cossart P (2009) Listeria monocytogenes internalin and E-cadherin: from bench to bedside. Cold Spring Harb Perspect Biol 1:a003087

    Article  PubMed  PubMed Central  Google Scholar 

  • Brennan JD, Kent M, Dhar R, Fujioka H, Kumar N (2000) Anopheles gambiae salivary gland proteins as putative targets for blocking transmission of malaria parasites. Proc Natl Acad Sci U S A 97:13859–13864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brey PT, Lee W-J, Yamakawa M, Koizumi Y, Perrot S, Francois M, Ashida M (1993) Role of the integument in insect immunity: epicuticlar abrasion and induction of cecropin synthesis in cuticular epithelial cells. Proc Natl Acad Sci U S A 90:6275–6279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JJ, Reed DA (1997) Host embryonic and larval castration as a strategy for the individual castrator and the species. In: Beckage NE (ed) Parasites and pathogens effects on host hormones and behavior. International Thompson Publishing, New York

    Google Scholar 

  • Byers JR, Yu DS, Jones JW (1993) Parasitism of the army cutworm, Euxoa auxiliaris (Grt) (Lepidoptera, Noctuidae), by Copidosoma bakeri (Howard) (Hymenoptera, Encyrtidae) and effect on crop damage. Can Entomol 125:329–335

    Article  Google Scholar 

  • Cai J, Ye G-Y, Hu C (2004) Parasitism of Pieris rapae (Lepidoptera: Pieridae) by a pupal endoparasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae): effects of parasitization and venom on host hemocytes. J Insect Physiol 50:315–322

    Article  CAS  PubMed  Google Scholar 

  • Cherbas L (1973) The induction of an injury reaction in cultured hemocytes from saturniid pupae. J Insect Physiol 19:2011–2023

    Article  CAS  Google Scholar 

  • Chevignon G, Theze J, Cambier S, Poulain J, Da Silva C, Bezier A, Musset K, Moreau SJ, Drezen JM, Huguet E (2014) Functional annotation of Cotesia congregate bracovirus: identification of viral genes expressed in parasitized host immune tissues. J Virol 88:8795–8812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho NK, Keyes L, Johnson E, Heller J, Ryner L, Karim F, Krasnow MA (2002) Developmental control of blood cell migration by the Drosophila VEGF pathway. Cell 108:865–876

    Article  CAS  PubMed  Google Scholar 

  • Clausen CP (1972) Entomophagous insects. Hafner Publishing Company, New York

    Google Scholar 

  • Colinet D, Schmitz A, Depoix D, Crochard D, Poirie M (2007) Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens. PLoS Pathog 3:e203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coodin S, Caveney S (1992) Lipophorin inhibits the adhesion of cockroach (Periplaneta Americana) haemocytes in vitro. J Insect Physiol 38:853–862

    Article  CAS  Google Scholar 

  • Cooper D, Eleftherianos I (2017) Memory and specificity in the insect immune system: current perspectives and future challenges. Front Immunol 8:539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corbet S (1968) The influence of Ephestia kuehniella on the development of its parasite Nemeritis canescens. J Exp Biol 48:291–304

    Google Scholar 

  • Corley LS, Strand MR (2003) Evasion of encapsulation by the polyembryonic parasitoid Copidosoma floridanum is mediated by a polar body-derived extraembryonic membrane. J Invertebr Pathol 83:86–89

    Article  PubMed  Google Scholar 

  • Dahlman DL (1990) Evaluation of teratocyte function; An Overview. Arch Insect Biochem Physiol 13:159–166

    Article  Google Scholar 

  • Dahlman DH, Vinson SB (1993) Teratocytes: developmental and biochemical characteristics. In: Beckage NE, Thompson SN, Federici BA (eds) Parasites and pathogens of insects, vol 1. Academic, San Diego, pp 145–165

    Chapter  Google Scholar 

  • Danneels EL, Rivers DB, de Graaf DC (2010) Venom protections of the parasitoid wasp Nasonia vitripennis: recent discovery of an untapped pharmacopee. Toxins 2:494–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danneels E, Formesyn E, Hahn D, Denlinger D, Cardoen D, Wenseleer T, Schoofs L, de Graaf D (2013) Early changes in the pupal transcriptome of the flesh fly Sarcophagha crassipalpis to parasitization by the ectoparasitic wasp, Nasonia vitripennis. Insect Biochem Mol Biol 43:1189–1200

    Article  CAS  PubMed  Google Scholar 

  • Davies DH, Vinson SB (1986) Passive evasion by eggs of braconid parasitoid, Cardiochiles nigriceps, of encapsulation in vitro by haemocytes of host Heliothis virescens. Possible role of fibrous layer in immunity. J Insect Physiol 32:1003–1010

    Article  Google Scholar 

  • Dean P, Richards HE, Edwards JP, Reynolds SE, Charnley K (2004) Microbial infection causes the appearance of hemocytes with extreme spreading ability in monolayers of the tobacco hornworm Manduca sexta. Dev Comp Immunol 28:689–700

    Article  CAS  PubMed  Google Scholar 

  • Desneux N, Barta RJ, Delebacque CJ, Heimpel GE (2009) Transient host paralysis as a means of reducing self-superparasitism in koinobiont endoparasitoids. J Insect Physiol 55:321–327

    Article  CAS  PubMed  Google Scholar 

  • Dinglasan RR, Jacobs-Lorena M (2005) Insight into a conserved lifestyle: protein-carbohydrate adhesion strategies of vector-borne pathogens. Infect Immun 73:7797–7807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittrick L, Chiang HC (1982) Developmental characteristics of Macrocentrus grandii as influenced by temperature and instar of its host, the European corn borer. J Insect Physiol 28:47–52

    Article  Google Scholar 

  • Edson KM, Barlin MR, Vinson SB (1982) Venom apparatus of braconid wasps: comparative ultrastructure of reservoirs and gland filaments. Toxicon 20:553–562

    Article  CAS  PubMed  Google Scholar 

  • Edwards JP, Weaver RJ, Marris GC (2001) Endocrine changes in lepidopteran larvae: potential challenges to parasitoid development and survival. In: Edwards JP, Weaver RJ (eds) Endocrine interactions of insect parasites and pathogens. BIOS Scientific Publications Limited, Oxford, pp 1–32

    Google Scholar 

  • Elaine HR, Neil MP (2000) Venom from the endoparasitic wasp Pimpla hypochondriaca adversely affects the morphology, viability, and immune function of hemocytes from larvae of the tomato moth, Lacanobia oleracea. J Invertebr Pathol 76:33–42

    Article  Google Scholar 

  • Enders AC, Schlafke S (1972) Implantation in the ferret: epithelial penetration. Am J Anat 133:291–316

    Article  CAS  PubMed  Google Scholar 

  • Epstein ML, Gilula NB (1977) A study of communication specificity between cells in culture. J Cell Biol 75:769–787

    Article  CAS  PubMed  Google Scholar 

  • Etebari K, Palfreyman RW, Schlipalius D, Nielsen LK, Glatz RV, Asgari S (2011) Deep sequencing-based transcriptome analysis of Plutella xylostella larvae parasitized by Diadegma semiclausum. BMC Genomics 12:446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Q, Wang F, Zhu J, Li Y, Song Q, Stanley D, Akhtar Z, Ye G (2010) Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum. BMC Genomics 11:484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feddersen I, Sander K, Schmidt O (1986) Virus-like particles with host protein-like antigenic determinants protect an insect parasitoid from encapsulation. Experientia 42:1278–1281

    Article  CAS  Google Scholar 

  • Ferguson MA (1997) The surface glycoconjugates of trypanosomatid parasites. Philos Trans R Soc Lond B Biol Sci 352:1295–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming JGW (1992) Polydnaviruses: mutualists and pathogens. Annu Rev Entomol 37:401–425

    Article  CAS  PubMed  Google Scholar 

  • Forbes A, Lehmann R (1999) Cell migration in Drosophila. Curr Opin Genet Dev 9:473–478

    Article  CAS  PubMed  Google Scholar 

  • Gardiner EMM, Strand MR (2000) Hematopoiesis in larval Pseudoplusia includens and Spodoptera frugiperda. Arch Insect Biochem Physiol 43:147–164

    Article  CAS  PubMed  Google Scholar 

  • Gentsch JR, Pacitti AF (1987) Differential interaction of reovirus type 3 with sialylated receptor components on animal cells. Virology 161:245–248

    Article  CAS  PubMed  Google Scholar 

  • Giepman B (2006) Role of connexin-43-interacting proteins at gap junctions. Adv Cardiol 42:41–56

    Article  Google Scholar 

  • Giron D, Dunn DW, Hardy ICW, Strand MR (2004) Aggression by polyembryonic wasp soldiers correlates with kinship but not resource competition. Nature 430:676–679

    Article  CAS  PubMed  Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton

    Book  Google Scholar 

  • Götz P (1986) Mechanisms of encapsulation in dipteran hosts. In: Lackie AM (ed) Immune mechanisms in invertebrate vectors. Clarendon, Oxford, pp 1–19

    Google Scholar 

  • Götz P, Boman HG (1985) Insect immunity. In: Kerkut GA, Gilbert LI (eds) Comparative insect physiology, biochemistry and pharmacology, vol 3. Pergamon Press, Oxford, pp 453–485

    Google Scholar 

  • Gotz P, Boman HG (1985) Insect immunity. In: Kerkut GA, Gilbert LJ (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 11. Pergamon, Oxford, pp 453–485

    Google Scholar 

  • Grbic M, Ode PJ, Strand MR (1992) Sibling rivalry and brood sex ratios in polyembryonic wasps. Nature 360:254–256

    Article  Google Scholar 

  • Grbic M, Rivers D, Strand MR (1997) Caste formation in the polyembryonic wasp Copidosoma floridanum (Hymenoptera: Encyrtidae): in vivo and in vitro analysis. J Insect Physiol 43:553–565

    Article  CAS  PubMed  Google Scholar 

  • Griesemer A, Yamada K, Sykes M (2014) Xenotransplantation: immunological hurdles and progress toward tolerance. Immunol Rev 258:241–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossniklaus-Burgin C, Lanzrein B (1990) Qualitative and quantitative analyses of juvenile hormone and ecdysteroids from the egg to the pupal molt in Trichoplusia ni. Arch Insect Biochem Physiol 14:13–30

    Article  CAS  PubMed  Google Scholar 

  • Guglielmino A (2002) Dryinidae (Hymenoptera Chrysidoidea): an interesting group among the natural enemies of the Auchenorrhyncha (Hemiptera). Neue Folge 176:549–556

    Google Scholar 

  • Gupta AP (1979) Hemocyte types: their structures, synonymies interrelationships and taxonomic significance. In: Gupta AP (ed) Insect hemocytes: development, forms, functions and techniques. Cambridge University Press, Cambridge, London, p 23

    Chapter  Google Scholar 

  • Gupta AP (1985) In: Kerkut GA, Gilbert LI (eds) Cellular elements in the hemolymph, vol 3. Pergamon Press, New York, pp 401–451

    Google Scholar 

  • Gupta AP (1986) Hemocytic and humoral immunity in arthropods. Wiley-Interscience, New York, 535 pp

    Google Scholar 

  • Gupta AP (1991a) Insect immunocytes and other hemocytes: roles in cellular and humoral immunity. In: Gupta AP (ed) Immunology of insects and other arthropods. CRC Press, MI/London, pp 22–118

    Google Scholar 

  • Gupta AP (1991b) Gap junctions. In: Gupta AP (ed) Immunology of insects and other arthropods. CRC Press Inc., Boca Raton, pp 19–118

    Google Scholar 

  • Hammache D, Pieroni G, Yahi N, Delezay O, Koch N, Lafont H, Tamalet C, Fantini J (1998) Specific interaction of HIV-1 and HIV-2 surface envelope glycoproteins with monolayers of galactosylceramide and ganglioside GM3. J Biol Chem 273:7967–7971

    Article  CAS  PubMed  Google Scholar 

  • Han SS, Gupta AP (1989) Arthropod immune system. II. Encapsulation of implanted nerve cord and “plain gut” surgical structure by granulocytes of Blattella germanica (L) (Dictyoptera: Blattellidae). Zool Sci 6:303–320

    Google Scholar 

  • Han S-S, Lee M-H, Kim W-K, Wago H, Yoe S-M (1998) Hemocytic differentiation in hemopoietic organ of Bombyx mori larvae. Zool Sci 15:371–379

    Article  CAS  Google Scholar 

  • Han YS, Thompson J, Kafatos FC, Barillas-Mury C (2000) Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes. EMBO J 19:6030–6040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey JA, Harvey IF, Thompson DJ (1995) The effect of host nutrition on growth and development of the parasitoid wasp Venturia canescens. Entomol Exp Appl 75:213–220

    Article  Google Scholar 

  • Harvey JA, Corley LS, Strand MR (2000) Competition induces adaptive shifts in caste ratios of a polyembryonic wasp. Nature 406:183–186

    Article  CAS  PubMed  Google Scholar 

  • Hawlitzky N (1972) Mode of penetration of an egg-larva parasite, Phanerotoma flavitestacea FISH. [Hymanoptera: Braconidae], into the embryo of its host, Anagasta kuehniella ZELL. [Lepidoptera: Pyralidae]. Entomophaga 17:375–389

    Article  Google Scholar 

  • Hawlitzky N (1979) Pathology of microsporidiosis of cabbage looper larvae, Trichoplusia ni [Lep. :Noctuidae] byVairimorpha necatrix. Entomophaga 24:237–245

    Article  Google Scholar 

  • Hayakawa Y, Yazaki K (1997) Envelope protein of parasitic wasp’s symbiont virus, polydnavirus, protects the wasp eggs from cellular immune reactions by the host insect. Eur J Biochem 246:820–826

    Article  CAS  PubMed  Google Scholar 

  • Herniou EA, Huguet E, Theze J, Bezier A, Periquet G, Drezen J-M (2018) When parasitic wasps hijacked viruses: genomic and functional evolution of polydnaviruses. Philos Trans R Soc B 368:20130051

    Article  CAS  Google Scholar 

  • Hinks CF, Arnold JW (1977) Haemopoiesis in Lepidoptera. II. The role of haemopoietic organs. Can J Zool 55:1740–1755

    Article  Google Scholar 

  • Horvath CA, Boulet GA, Renoux VM, Delvenne PO, Bogers JP (2010) Mechanisms of cell entry by human papillomaviruses: an overview. Virol J 7:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoshino K, Iwabuchi K (2004) Adhesion and cytoplasmic extension of Xylotrechus pyrrhoderus (Coleoptera; Cerambycidae) hemocytes induced by 20-hydroxyecdysone and juvenile hormone in vitro. Appl Entomol Zool 39:209–216

    Article  CAS  Google Scholar 

  • Hotta M, Okuda T, Tanaka T (2001) Cotesia kariyai teratocytes: growth and development. J Insect Physiol 47:31–41

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Zhu XX, Fu WJ (2003) Passive evasion of encapsulation in Macrocentrus cingulum Brischke (Hymenoptera: Braconidae), a polyembryonic parasitoid of Ostrinia furnacalis Guenee (Lepidoptera: Pyralidae). J Insect Physiol 49:367–375

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Yu X, Fu W, Zhang W (2008) A Helix pomatia lectin binding protein on the extraembryonic membrane of the polyembryonic wasp Macrocentrus cingulum protects embryos from being encapsulated by hemocytes of host Ostrinia furnaclis. Dev Comp Immunol 32:356–364

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Xu Q, Yu X, Liang Z, Zhang W (2014) Hemomucin, an O-glycosylated protein on embryos of the wasp Macrocentrus cingulum that protects it against encapsulation by hemocytes of the host Ostrinia furnacalis. J Innate Immun 6:663–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter KW, Stoner A (1975) Copidosoma truncatellum: effect of parasitization on food consumption of larval Trichoplusia ni. Environ Entomol 4:381–382

    Article  Google Scholar 

  • Isa P, Arias CF, Lopez S (2006) Role of sialic acids in rotavirus infection. Glycoconj J 23:27–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isberg RR, Barnes P (2001) Subversion of integrins by enteropathogenic Yersinia. J Cell Sci 114:21–28

    CAS  PubMed  Google Scholar 

  • Isberg RR, Voorhis DL, Falkow S (1987) Identification of invasion: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell 50:769–778

    Article  CAS  PubMed  Google Scholar 

  • Iwabuchi K (1991) Early embryonic development of a polyembryonic wasp, Litomastix maculata Ishii, in vivo and in vitro. Appl Entomol Zool 26:563–570

    Article  Google Scholar 

  • Iwabuchi K (1996) Effect of juvenile hormone on the embryogenesis of a polyembryonic wasp, Copidosoma floridanum, in vitro. In Vitro Cell Dev Biol Anim 31:803–805

    Article  Google Scholar 

  • Jacinto A, Martinez-Arias A, Martin P (2001) Mechanisms of epithelial fusion and repair. Nat Cell Biol 3:E117–E123

    Article  CAS  PubMed  Google Scholar 

  • Jang AC, Starz-Gaiano M, Montell DJ (2007) Modeling migration and metastasis in Drosophila. J Mammary Gland Biol Neoplasia 12:103–114

    Article  PubMed  Google Scholar 

  • Jiang H, Vilcinskas A, Kanost MR (2010) Immunity in lepidopteran insects. In: Soderhall K (ed) Invertebrate immunity. Springer

    Google Scholar 

  • Jones JC (1970) In: Gordon AS (ed) Hemocytopoiesis in insects: regulation of hematopoiesis. Appleton-Century-Crofts, New York, pp 7–65

    Google Scholar 

  • Jones JC (1979) Pathways and pitfalls in the classification and study of insect hemocytes. In: Gupta AP (ed) Insect hemocytes. Cambridge University Press, pp 279–300

    Google Scholar 

  • Jones D (1989) Protein expression during parasite redirection of host (Trichoplusia ni) biochemistry. Insect Biochem 19:445–455

    Article  CAS  Google Scholar 

  • Jones D, Jones G, Hammock BD (1981) Developmental and behavioural responses of larval Trichoplusia ni to parasitization by an imported braconid parasite Chelonus sp. Physiol Entomol 6:387–394

    Article  Google Scholar 

  • Jones D, Robert GJ, Steenwyk AV, Hammock BR (1982) Effect of the parasite Copidosoma truncatellum on development of its host Trichoplusia ni. Ann Entomol Soc Am 75:7–11

    Article  Google Scholar 

  • Kaeslin M, Wehrle I, Grossniklaus-Burgin C, Wyler T, Guggisberg U, Schittny JC, Lanzrein B (2005) Stage-dependent strategies of host invasion in the egg-larval parasitoid Chelonus inanitus. J Insect Physiol 51:287–296

    Article  CAS  PubMed  Google Scholar 

  • Karlsson KA (1989) Animal glycosphinogolipids as membrane attachment sites for bacteria. Annu Rev Biochem 58:309–350

    Article  CAS  PubMed  Google Scholar 

  • Karp RD (1993) The response to foreign tissue transplants in insects. In: Beckage NE, Thompson SN, Federici BA (eds) Parasites and pathogens of insects, vol 1. Academic, New York, pp 305–316

    Chapter  Google Scholar 

  • Kathirithamby J, Ross LD, Johnston JS (2003) Masquerading as self? endoparasitic Strepsiptera (Insecta) enclose themselves in host-derived epithelial bag. Proc Natl Acad Sci U S A 100:7655–7659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato Y, Sato R, Sano T, Nakamatsu Y, Miura K, Tanaka T (2016) Meteorus pulchricornis (Wesmael) (Hymenoptera, Braconidae) teratocytes release Mp19 protein in MpVLP, suppressing the function of hyper-spreading hemocytes in Mythimna separate. Curr Top Biochem Res 17:77–94

    CAS  Google Scholar 

  • Kelly GM, Hubsner E (1987) Juvenoid effects on Rhodnius prolixus embryogenesis. Insect Biochem 17:1079–1083

    Article  CAS  Google Scholar 

  • Kim Y, Choi JY, Je YH (2007) Cotesia plutellae bracovirus genome and its function in altering insect physiology. J Asia Pac Entomol 10:181–191

    Article  CAS  Google Scholar 

  • Kinuthia W, Li D, Schmidt O, Theopold U (1999) Is the surface of endoparasitic wasp eggs and larvae covered by a limited coagulation reaction? J Insect Physiol 45:501–506

    Article  CAS  PubMed  Google Scholar 

  • Kitano H (1962) Studies on the origin of giant cells in the body fluid of Pieris rapae crucivora attacked by Apanteles glomeratus. Zool Mag 71:262–268

    Google Scholar 

  • Kitano H, Wago H, Arakawa T (1990) Possible role of teratocytes of the gregarious parasitoid, Cotesia (=Apanteles) glomeratus in the suppression of phenoloxidase activity in the larval host, Pieris rapae crucivora. Arch Insect Biochem Physiol 13:177–185

    Article  CAS  Google Scholar 

  • Klomp H, Teerink BJ (1978) The epithelium of the gut as a barrier against encapsulation by blood cells in three species of parasitoids of Bupalus piniarius (Lep: Geometridae). Neth J Zool 28:132–139

    Article  Google Scholar 

  • Kojima T, Murata M, Go M, Spray DC, Sawada N (2007) Connexins induce and maintain tight junctions in epithelial cells. J Membr Biol 217:13–19

    Article  CAS  PubMed  Google Scholar 

  • Koscielski B, Koscielska MK, Szroeder J (1978) Ultrastructure of the polygerm of Ageniaspis fuscicollis Dalm. (Chalcidoidea, Hymenoptera). Zoomorphology 89:279–288

    Article  Google Scholar 

  • Kryukova N, Dubovskiy I, Chertkova E, Vorontsova Y, Slepneva I, Glupov V (2011) The effect of Habrobracon hebetor venom on the activity of the prophenoloxidase system, the generation of reactive oxygen species and encapsulation in the haemolymph of Galleria mellonella larvae. J Insect Physiol 57:769–800

    Article  CAS  Google Scholar 

  • Kumar S, Kim Y (2016) Glyceraldehyde-3-phosphate dehydrogenase is a mediator of hemocyte-spreading behavior and molecular target of immunosuppressive factor CrV1. Dev Comp Immunol 54:97–108

    Article  CAS  PubMed  Google Scholar 

  • Labrosse C, Stasiak K, Lesobre J, Grangeia A, Huguet E, Drezen JM, Poirie M (2005) A RhoGAP protein as a main immune suppressive factor in the Leptopilina boulardi (Hymenoptera, Figitidae)—Drosophila melanogaster interaction. Insect Biochem Mol Biol 35:93–103

    Article  CAS  PubMed  Google Scholar 

  • Lackie AM (1979) Cellular recognition of foreign-ness in two insect species, the American cockroach and the desert locust. Immunology 36:909–914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lackie AM (1988) Haemocyte behaviour. Adv Insect Physiol 21:85–177

    Article  CAS  Google Scholar 

  • Lafferty KD, Kurls AM (2009) Parasitic castration: the evolution and ecology of body snatchers. Trends Parasitol 25:564–572

    Article  PubMed  Google Scholar 

  • Lampert EC, Bowers MD (2010) Host plant species affects the quality of the generalist Trichoplusia ni as a host for the polyembryonic parasitoid Copidosoma floridanum. Entomol Exp Appl 134:287–295

    Article  Google Scholar 

  • Lampert EC, Zangerl AR, Berenbaum MR, Ode PJ (2008) Tritrophic effects of xanthotoxin on the polyembryonic parasitoid Copidosoma sosares (Hymenoptera: Encyrtidae). J Chem Ecol 34:783–790

    Article  CAS  PubMed  Google Scholar 

  • Lapointe R, Tanaka K, Barney WE, Whitfield JB, Banks JC, Beliveau C, Stoltz D, Webb BA, Cusson M (2007) Genomic and morphological features of a banchine polydnavirus: a comparison with bracoviruses and ichnoviruses. J Virol 81:6491–6501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavine MD, Beckage NE (1995) Polydnaviruses: potent mediators of host immune dysfunction. Parasitol Today 11:368–378

    Article  CAS  PubMed  Google Scholar 

  • Lawrence PO (1986) Host-parasite hormonal interactions: an overview. J Insect Physiol 32:295–298

    Article  CAS  Google Scholar 

  • Lea MS (1986) A Sericesthis iridescent virus infection of the hemocytes of the wax moth, Galleria mellonella: effects on total and differential counts and hemocyte ontogeny. J Invertebr Pathol 48:42–51

    Article  Google Scholar 

  • Leiby RW, Hill CC (1923) The twinning and monoembryonic development of Platygaster hiemalis, a parasite of the Hessian fly. J Agric Res 25:237–249

    Google Scholar 

  • Leiby RW, Hill CC (1924) The polyembryonic development of Platygaster vernalis. J Agric Res 28:829–839

    Google Scholar 

  • Lender MT, Laverdure AM (1967) Culture in vitro des ovarires de Tenebrio molitor (Coleoptere). Croissance et vitellogeneses. C R Seances Acad Sci D 265:451–454

    CAS  Google Scholar 

  • Leonard C, Ratcliffe NA, Rowley AF (1985) The role of prophenoloxidase activation in non-self recognition and phagocytosis by insect blood cells. J Insect Physiol 31:789–799

    Article  CAS  Google Scholar 

  • Li X, Webb BA (1994) Apparent functional role for a cysteine-rich polydnavirus protein in suppression of insect cellular immunity. J Virol 68:7482–7489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Sun X, Dey SK (2015) Entosis allows timely elimination of the liminal epithelial barrier for embryo implantation. Cell Rep 11:358–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling E, Shirai K, Kanekatsu R, Kiguchi K (2003) Classification of larval circulating hemocytes of the silkworm, Bombyx mori, by acridine orange and propidium iodide staining. Histochem Cell Biol 120:505–511

    Article  CAS  PubMed  Google Scholar 

  • Ling E, Shirai K, Kanekatsu K, Kiguchi K (2005) Hemocyte differentiation in the hematopoietic organs of the silkworm, Bombyx mori: prohemocytes have the function of phagocytosis. Cell Tissue Res 320:535–543

    Article  PubMed  Google Scholar 

  • Lingwood CA, Binnington B, Manis A, Branch DR (2010) Globotriaosyl ceramide receptor function—where membrane structure and pathology intersect. FEBS Lett 584:1879–1886

    Article  CAS  PubMed  Google Scholar 

  • Liu NY, Huang JM, Ren XM, Xu ZW, Yan NS, Zhu JY (2018) Superoxide dismutase from venom of the ectoparasitoid Scleroderma quani inhibits melanization of hemolymph. Arch Insect Biochem Physiol 99:e21503

    Article  PubMed  CAS  Google Scholar 

  • Lu JF, Chen XX, Zhu XX, Fu WJ (2007) Encapsulation of implanted foreign bodies by haemocytes in Ostrinia furnacalis larvae. J Zhejiang Univ (Agriculture and Life Sciences) 33:119–227

    Google Scholar 

  • Luckhart SL, Webb BA (1996) Interaction of a wasp ovarian protein and csPDV in host immune suppression. Dev Comp Immunol 20:1–20

    Article  CAS  PubMed  Google Scholar 

  • Mandato CA, Diehl-Jones W, Dower RGH (1996) Insect hemocyte adhesion in vitro: inhibition by apolipophorin 1 and an artificial substrate. J Insect Physiol 42:143–148

    Article  CAS  Google Scholar 

  • Mangalika PR, Kawamoto T, Takahashi-Nakaguchi A, Iwabuchi K (2010) Characterization of cell clusters in larval hemolymph of the cabbage armyworm Mamestra brassicae and their role in maintenance of hemocyte populations. J Insect Physiol 56:314–323

    Article  CAS  PubMed  Google Scholar 

  • Marra A, Isberg RR (1996) Common entry mechanisms. Bacterial pathogenesis. Curr Biol 6:1084–1086

    Article  CAS  PubMed  Google Scholar 

  • Martinson EO, Wheeler D, Wright J, Mrinalini, Siebert AL, Werren JH (2014) Nasonia vitripennis venom causes targeted gene expression changes in its fly host. Mol Ecol 23:5918–5930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng W, Takeichi M (2009) Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol 1:a002899

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitsuhashi J, Inoue H (1988) Obtainment of a continuous cell line from the larval fat bodies of the mulberry tiger moth, Spilosoma imparilis (Lepidoptera: Arctiidae). Appl Entomol Zool 23:488–490

    Article  Google Scholar 

  • Monpeyssin M, Beaulaton J (1978) Hemocytopoiesis in the oak silkworm Antheraea pernyi and some other Lepidoptera. J Ultrastruct Res 64:35–45

    Article  CAS  PubMed  Google Scholar 

  • Montell DJ (2001) Command and control: regulatory pathways controlling invasive behavior of the border cells. Mech Dev 105:19–25

    Article  CAS  PubMed  Google Scholar 

  • Montell DJ (2003) Border-cell migration: the race is on. Nat Rev Mol Cell Biol 4:13–24

    Article  CAS  PubMed  Google Scholar 

  • Moore E, Haspel G, Libersat F, Adams M (2006) Parasitoid wasp sting: a cocktail of GABA, taurine, and beta-alanine opens chloride channels for central synaptic block and transient paralysis of a cockroach host. J Neurobiol 66:811–820

    Article  CAS  PubMed  Google Scholar 

  • Moran AP, Prendergast MM (2001) Molecular mimicry in Campylobacter jejuni and Helicobacter pylori lipopolysaccharides: contribution of gastrointestinal infections to autoimmunity. J Autoimmun 16:241–256

    Article  CAS  PubMed  Google Scholar 

  • Moreau SJM, Asgari S (2015) Venom proteins from parasitoid wasps and their biological functions. Toxin Rev 7:2385–2412

    Article  CAS  Google Scholar 

  • Moreau SJM, Cherqui A, Doury G, Dubois F, Fourdrain Y, Sabatier L, Bulet P, Saarela J, Prevost G, Giordanengo P (2004) Identification of an aspartylglucosaminidase-like protein in the venom of the parasitic wasp Asobara tabida (Hymenoptera: Braconidae). Insect Biochem Mol Biol 34:485–492

    Article  CAS  PubMed  Google Scholar 

  • Murphy N, Banks J, Whitfield JB, Austin A (2008) Phylogeny of the parasitic microgastroid subfamilies (Hymenoptera: Braconidae) based on sequence data from seven genes, with an improved time estimate of the origin of the lineage. Mol Phylogenet Evol 47:378–395

    Article  CAS  PubMed  Google Scholar 

  • Nakaguchi A, Hiraoka T, Endo Y, Iwabuchi K (2006) Compatible invasion of a phylogenetically distant host embryo by a hymenopteran parasitoid embryo. Cell Tissue Res 324:167–173

    Article  PubMed  Google Scholar 

  • Nakahara Y, Kanamori Y, Kiuchi M, Kamimura M (2003a) Effects of silkworm paralytic peptide on in vitro hematopoiesis and plasmatocyte spreading. Arch Insect Biochem Physiol 52:163–174

    Article  CAS  PubMed  Google Scholar 

  • Nakahara Y, Kanamori Y, Kiuchi M, Kamimura M (2003b) In vitro studies of hematopoiesis in the silkworm: cell proliferation in and hemocyte discharge from the hematopoietic organ. J Insect Physiol 49:907–916

    Article  CAS  PubMed  Google Scholar 

  • Nakamatsu Y, Fujii S, Tanaka T (2002) Larvae of an endoparasitoid, Cotesia kariyai (Hymenoptera: Braconidae), feed on the host fat body directly in the second stadium with the help of teratocytes. J Insect Physiol 48:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Nardi JB, Pilas B, Ujhelyi E, Garsha K, Kanost M (2003) Hematopoietic organs of Manduca sexta and hemocyte lineages. Dev Genes Evol 213:477–491

    Article  PubMed  Google Scholar 

  • Nenon MJ-P (1972a) Culture in vitro des embryons d’un Hymenoptere endoparasite polyembryonnaire: Ageniaspis fuscicollis (= Encyrtus fuscicollis). Role des hormones de synthese. C R Seances Acad Sci D 274:3299–3302

    CAS  Google Scholar 

  • Nenon MJ-P (1972b) Culture in vitro des larves d’un Hymenoptere endoparasite Polyembryonnaire: Ageniaspis fuscicollis. Role des hormones de synthese. C R Seances Acad Sci D 274:3409–3415

    CAS  Google Scholar 

  • Niewiadomska P, Godt D, Tepass U (1999) DE-cadherin is required for intercellular motility during Drosophila oogenesis. J Cell Biol 144:533–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikawa H, Yoshimura J, Iwabuchi K (2013) Sex differences in the protection of host immune systems by a polyembryonic parasitoid. Biol Lett 9:20130839

    Article  PubMed  PubMed Central  Google Scholar 

  • Nittono Y (1960) Studies on the blood cells in the silkworm, Bombyx mori. Bull Sericult Exp Station 16:171–266

    Google Scholar 

  • Nittono Y, Tomabechi S, Onodera N (1964) Formation of hemocytes near Imaginal wing discs in the silkworm Bombyx mori L. (preliminary note). J Sericult Sci Jpn 33:43–45

    Google Scholar 

  • Noyes JS (1988) Copidosoma truncatellum (Dalman) and C. floridanum (Ashmead) (Hymenoptera, Encyrtidae), two frequently misidentified polyembryonic parasitoids of catterpillars (Lepidoptera). Syst Entomol 13:197–204

    Article  Google Scholar 

  • Ode PJ (2006) Plant chemistry and natural enemy fitness: effects on herbivore and natural enemy interactions. Annu Rev Entomol 51:163–185

    Article  CAS  PubMed  Google Scholar 

  • Ode PJ, Strand MR (1995) Progeny and sex allocation decisions of the Polyembryonic wasp Copidosoma floridanum. J Anim Ecol 64(2):213

    Article  Google Scholar 

  • Ode PJ, Berenbaum MR, Zangerl AR, Hardy ICW (2004) Host plant, host chemistry and the polyembryonic parasitoid Copidosoma sosares: indirect effects in a tritrophic interaction. Oikos 104:388–400

    Article  CAS  Google Scholar 

  • Okazaki T, Okudaira N, Iwabuchi K, Fugo H, Nagai T (2006) Apoptosis and adhesion of hemocytes during molting stage of silkworm, Bombyx mori. Zool Sci 23:299–304

    Article  CAS  Google Scholar 

  • Okuda T, Kadono-Okuda K (1995) Perilitus coccinellae teratocytes polypeptide: evidence for production of a teratocyte-specific 540 kDa protein. J Insect Physiol 41:819–825

    Article  CAS  Google Scholar 

  • Omata K (1989) Control mechanisms of larval diapause and quiescence in Trogus mactator, an endoparasite of papilionids. Entomol Exp Appl 53:31–37

    Article  Google Scholar 

  • Orr DB, Boethel DJ (1985) Comparative development of Copidosoma truncatellum (Hymenoptera: Encyrtidae) and its host, Pseudoplusia includens (Lepidoptera: Noctuidae), on resistant and susceptible soybean genotypes. Environ Entomol 14:612–616

    Article  Google Scholar 

  • Pacquelet A, Rorth P (2005) Regulatory mechanisms required for DE-cadherin function in cell migration and other types of adhesion. J Cell Biol 170:803–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panchin YV (2005) Evolution of gap junction proteins—The pannexin alternative. J Exp Biol 208:1415–1419

    Article  CAS  PubMed  Google Scholar 

  • Parker HL (1931) Macrocentrus gifuensis Ashmead, a polyembryonic braconid parasite in the European corn borer. Tech Bull US Dep Agric 230:1–62

    Google Scholar 

  • Pech LL, Strand MR (1996) Granular cells are required for encapsulation of foreign targets by insect haemocytes. J Cell Sci 109:2053–2060

    CAS  PubMed  Google Scholar 

  • Pennacchio F, Vinson SB, Tremblay E, Ostuni A (1994) Alteration of ecdysone metabolism in Heliothis virescens (F.) (Lepidoptera, Noctuidae) larvae induced by the endophagous parasitoid Cardiochiles nigriceps Vierick (Hymenoptera: Braconidae) teratocytes. Insect Biochem Mol Biol 24:383–394

    Article  CAS  Google Scholar 

  • Perrone JB, DeMaio SA (1986) Regions of mosquito salivary glands distinguished by surface lectin-binding characteristics. Insect Biochem 16:313–318

    Article  CAS  Google Scholar 

  • Phelan P (2005) Innexins: members of an evolutionarily conserved family of gap-junction proteins. Biochim Biophys Acta 1711:225–245

    Article  CAS  PubMed  Google Scholar 

  • Piek T (1982) Delta-philanthotoxin, a semi-irreversible blocker of ion-channels. Comp Biochem Physiol C 72:311–315

    Article  CAS  PubMed  Google Scholar 

  • Poinar GO Jr, Leutenegger R, Gotz P (1968) Ultrastructure of the formation of a melanotic capsule in Diabrotica (Coleoptera) in response to a parasitic nematode (Mermithidae). J Ultrastruct Res 25:293–306

    Article  PubMed  Google Scholar 

  • Pruijssers AJ, Strand MR (2007) PTP-H2 and PTP-H3 from Microplitis demolitor bracovirus localize to focal adhesions and antiphagocytic in insect immune cells. J Virol 81:1209–1219

    Article  CAS  PubMed  Google Scholar 

  • Qian C, Liu Y, Fang Q, Min-Li Y, Liu S, Ye G, Li Y (2013) Venom of the ectoparasitoid, Nasonia vitripennis, influences gene expression in Musca domestica hemocytes. Arch Insect Biochem Physiol 83:211–231

    Article  CAS  PubMed  Google Scholar 

  • Quicke LJQ (1997) Parasitic wasps. Chapman & Hall, London, 470 pp

    Google Scholar 

  • Quintela ED, McCoy CW (1998) Synergistic effect of imidacloprid and two entomopathogenic fungi on the behavior and survival of larvae of Diaprepes abbreviates (Coleoptera: Curculionidae) in soil. J Econ Entomol 91:110–122

    Article  CAS  Google Scholar 

  • Ratcliffe NA (1993) Cellular defense responses of insects: unresolved problems. In: Beckage NE, Thompson SN, Federici BA (eds) Parasites and pathogens of insects, vol 1. Academic, San Diego, pp 267–304

    Chapter  Google Scholar 

  • Ratcliffe NA, Gagen SJ (1976) Cellular defense reactions of insect hemocytes in vivo: nodule formation and development in Galleria mellonella and Pieris brassicae larvae. J Invertebr Pathol 28:373–382

    Article  Google Scholar 

  • Ratcliffe NA, Rowley AF (1974) In vitro phagocytosis of bacteria by insect blood cells. Nature 252:391–1391

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe NA, Rowley AF (1979) Role of hemocytes in defense against biological agents. In: Gupta AP (ed) Insect hemocytes. Cambridge University Press, New York, pp 332–400

    Google Scholar 

  • Ratcliffe NA, Leonard C, Rowley AF (1984) Prophenoxidase activation: nonself recognition and cell cooperation in insect immunity. Science 226:557–559

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe NA, Rowley AF, Fitzgerald SW, Rhodes CP (1985) Invertebrate immunity: basic concepts and recent advances. Int Rev Cytol 97:186–350

    Google Scholar 

  • Read AF (1990) Parasites and the evolution of host sexual behavior. In: Barnard CJ, Behnke JM (eds) Parasitism and host behavior. Taylor & Francis, London, pp 117–158

    Google Scholar 

  • Rechav Y, Orion T (1975) The development of the immature stages of Chelonus inanitus [Spodoptera littoralis, morphology]. Ann Entomol Soc Am 68:457–462

    Article  Google Scholar 

  • Reed DA, Beckage NE (1997) Inhibition of testicular growth and development in Manduca sexta larvae parasitized by the braconid wasp Cotesia congregata. J Insect Physiol 43:29–38

    Article  CAS  PubMed  Google Scholar 

  • Reed-Larsen DA, Brown JJ (1990) Embryonic castration of the codling moth, Cydia pomonella by an endoparasitoid, Ascogaster quadridentata. J Insect Physiol 36:111–118

    Article  Google Scholar 

  • Reitz SR, Trumble JT (1996) Tritrophic interactions among linear furanocoumarins, the herbivore Trichoplusia ni (Lepidoptera: Noctuidae), and the polyembryonic parasitoid Copidosoma floridanum (Hymenoptera: Encyrtidae). Environ Entomol 25:1391–1397

    Article  Google Scholar 

  • Riddiford LM (1975) Host hormones and insect parasites. In: Maramorosch K, Schopes RE (eds) Invertebrate immunity. Academic, New York, pp 339–353

    Chapter  Google Scholar 

  • Riddiford LM, Williams CM (1967) The effects of juvenile hormone analogues on the embryonic development of silkworms. Proc Natl Acad Sci U S A 53:595–601

    Article  Google Scholar 

  • Rivers DB, Denlinger DL (1994) Developmental fate of the flesh fly, Sarcophaga Bullata, envenomated by the pupal ectoparasitoid, Nasonia vitripennis. J Insect Physiol 40:121–127

    Article  Google Scholar 

  • Rivers DB, Denlinger DL (1995) Venom-induced alterations in fly lipid metabolism and its impact on larval development of the ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera, Pteromalidae). J Invertebr Pathol 66:104–110

    Article  CAS  Google Scholar 

  • Rivers DB, Ruggiero L, Hayes M (2002) The ectoparasitic wasp Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) differentially affects cells mediating the immune response of its flesh fly host, Sarcophaga bullata Parker (Diptera: Sarcophagidae). J Insect Physiol 48:1053–1064

    Article  CAS  PubMed  Google Scholar 

  • Rizki RM, Rizki TM (1990) Parasitoid virus-like particles destroy Drosophila immunity. Proc Natl Acad Sci 87:8388–8392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues J, Brayer FA, Alves LC, Dixit R, Barillas C (2010) Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science 329:1353–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg HT (1934) The biology and distribution in France of the larval parasites of Cydia pomonella L. Bull Entomol Res 35:201–256

    Article  Google Scholar 

  • Rotheram S (1967) Immune surface of eggs of a parasitic insect. Nature 214:700

    Article  CAS  PubMed  Google Scholar 

  • Rotheram SM (1973) The surface of the egg of a parasitic insect. I. The surface of the egg and first instar larva of Nemeritis. Proc R Soc B 183:179–194

    Google Scholar 

  • Rowley AF, Ratcliffe NA (1981) Insects. In: Ratcliffe NA, Rowley AF (eds) Invertebrate blood cells 2. Academic, London, pp 421–488

    Google Scholar 

  • Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715

    Article  CAS  PubMed  Google Scholar 

  • Ryerse JS (1998) Gap junctions. In: Harrison FW, Locke M (eds) Microscopic anatomy of invertebrates, vol 11C. Wiley-Liss, New York, pp 1167–1175

    Google Scholar 

  • Saito T, Iwabuchi K (2003) Effect of bombyxin-II, an insulin-related peptide of insects, on Bombyx mori hemocyte division in single-cell culture. Appl Entomol Zool 39:583–588

    Article  Google Scholar 

  • Salt G (1968) The resistance of insect parasitoids to the defence reactions of their hosts. Biol Rev 43:200–232

    Article  CAS  PubMed  Google Scholar 

  • Sander K (1996) Variants of embryonic patterning mechanisms in insects: Hymenoptera and Diptera. Semin Cell Dev Biol 7:573–582

    Article  Google Scholar 

  • Sasakura Y, Shoguchi E, Takatori N, Wada S, Meinertzhagen IA, Satou Y, Satoh N (2003) A genomewide survey of developmentally relevant genes in Ciona intestinalis. X. Genes for cell junctions and extracellular matrix. Dev Genes Evol 213:303–313

    Article  CAS  PubMed  Google Scholar 

  • Schmid-Hempel P (2005) Evolutionary ecology of insect immune defenses. Annu Rev Entomol 50:529–551

    Article  CAS  PubMed  Google Scholar 

  • Schmidt O, Schuchmann-Feddersen I (1989) Role of virus-like particles in parasitoid-host interaction of insects. Subcell Biochem 15:91–119

    Article  CAS  PubMed  Google Scholar 

  • Schmidt O, Theopold U, Strand M (2001) Innate immunity and its evasion and suppression by hymenopteran endoparasitoids. Bioessays 23:344–351

    Article  CAS  PubMed  Google Scholar 

  • Schmit AR, Ratcliffe NA (1977) The encapsulation of foreign tissue implants in Galleria mellonella larvae. J Insect Physiol 23:175–184

    Article  CAS  PubMed  Google Scholar 

  • Schmit AR, Ratcliffe NA (1978) The encapsulation of araldite implants and recognition of foreignness in Clitumnus extradentatus. J Insect Physiol 24:511–521

    Article  Google Scholar 

  • Segoli M, Bouskila A, Harari AR, Keasar T (2009a) Developmental patterns in the polyembryonic parasitoid wasp Copidosoma koehleri. Arthropod Struct Dev 38:84–90

    Article  PubMed  Google Scholar 

  • Segoli M, Harari AR, Bouskila A, Keasar T (2009b) Brood size in a polyembryonic parasitoid wasp is affected by relatedness among competing larvae. Behav Ecol 20:761–767

    Article  Google Scholar 

  • Segoli M, Harari AR, Bouskila A, Keasar T (2010) The effect of host starvation on parasitoid brood size in a polyembryonic wasp. Evol Ecol Res 12:259–267

    Google Scholar 

  • Sharanowski BJ, Dowling APG, Sharkey MJ (2011) Molecular phylogenetics of Braconidae (Hymenoptera: Ichneumonidae), based on multiple nuclear genes, and implications for classification. Syst Entomol 36:549–572

    Article  Google Scholar 

  • Shrivastava SC, Richards AG (1965) An autoradiographic study of the relation between hemocytes and connective tissue in the waxmoth Galleria mellonella L. Biol Bull 128:337–345

    Article  Google Scholar 

  • Siddiqui MI, Al-Khalifa MS (2014) Review of haemocyte count, response to chemicals, phagocytosis, encapsulation and metamorphosis in insects. Ital J Zool 81:2–15

    Article  CAS  Google Scholar 

  • Silvestri F (1921) Contribuzioni alla conoscenza biologica degli imenotteri parassiti. V. Sviluppo del Platygaster dryomyae Silv. (Fam. Proctotrupidae). Bollettino del Laboratorio di zoologia generale e agraria della R. Scuola superiore d’agricoltura in Portici 11:299–326

    Google Scholar 

  • Smith AE, Helenius A (2004) How viruses enter animal cells. Science 304:237–242

    Article  CAS  PubMed  Google Scholar 

  • Söderhäll K, Smith VJ (1986) The prophenoloxidase activating system: the biochemistry of its activation and role in arthropod cellular immunity, with special reference to crustaceans. In: Brehélin M (ed) Immunity in invertebrates. Springer, Berlin, pp 208–220

    Chapter  Google Scholar 

  • Starz-Gaiano M, Lehmann R (2000) Moving towards the next generation. Mech Dev 105:5–18

    Article  Google Scholar 

  • Starz-Gaiano M, Montell DJ (2004) Genes that drive invasion and migration in Drosophila. Curr Opin Genet Dev 14:86–91

    Article  CAS  PubMed  Google Scholar 

  • Starzl TE, Ishikawa M, Putnam CW, Porter KA, Picache R, Husberg BS, Halgrimson CG, Schroter G (1974) Progress in and deterrents to orthotopic liver transplantation, with special reference to survival, resistance to hyperacute rejection, and biliary duct reconstruction. Transplant Proc 6:129–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoltz DB (1990) Evidence for chromosomal transmission of polydnavirus DNA. J Gen Virol 71:1051–1056

    Article  CAS  PubMed  Google Scholar 

  • Stolz DB, Guzo D, Belland ER, Lucarotti CJ, Mackinnon EA (1988) Venom promotes uncoating in vitro and persistence in vivo of DNA from a braconid polydnavirus. J Gen Virol 69:903–907

    Article  Google Scholar 

  • Stossel TP (1993) On the crawling of animal cells. Science 260:1086–1094

    Article  CAS  PubMed  Google Scholar 

  • Strand MR (1986) The physiological interactions of parasitoids with their hosts and their influence on reproductive strategies. In: Waage J, Greathead D (eds) Insect parasitoids. Academic, London, pp 97–136

    Google Scholar 

  • Strand MR (1989) Development of the polyembryonic parasitoid Copidosoma floridanum in Trichoplusia ni. Entomol Exp Appl 50:37–47

    Article  Google Scholar 

  • Strand MR (2014) Teratocytes and their functions in parasitoids. Curr Opin Insect Sci 6:68–73

    Article  PubMed  Google Scholar 

  • Strand MR, Burke GR (2014) Polydnaviruses: Nature’s genetic engineers. Annu Rev Virol 1(1):333–354

    Article  PubMed  CAS  Google Scholar 

  • Strand MR, Burke GR (2015) Polydnaviruses: from discovery to current insights. Virology 479-480:393–402

    Article  CAS  PubMed  Google Scholar 

  • Strand MR, Grbic M (1997) Development and evolution of polyembryonic insects. Curr Top Dev Biol 35:121–160

    Article  CAS  PubMed  Google Scholar 

  • Strand MR, Noda T (1991) Alterations in the haemocytes of Pseudoplusia includens after parasitism by Microplitis demolitor. J Insect Physiol 37:839–850

    Article  Google Scholar 

  • Strand MR, Pech LL (1995) Immunological basis for compatibility in parasitoid-host relationships. Annu Rev Entomol 40:31–56

    Article  CAS  PubMed  Google Scholar 

  • Strand MR, Wong EA (1991) The growth and role of Microplitis demolitor teratocytes in parasitism of Pseudoplusia includens. J Insect Physiol 37:503–515

    Article  Google Scholar 

  • Strand MR, Dover BA, Johnson JA (1990a) Alterations in the ecdysteroid and juvenile hormone esterase profiles of Trichoplusia ni parasitized by the polyembryonic wasp Copidosoma floridanum. Arch Insect Biochem Physiol 13:41–51

    Article  CAS  Google Scholar 

  • Strand MR, Johnson JA, Dover BA (1990b) Ecdysteroid and juvenile hormone esterase profiles of Trichoplusia ni parasitized by the polyembryonic wasp Copidosoma floridanum. Arch Insect Biochem Physiol 13:41–51

    Article  CAS  Google Scholar 

  • Strand MR, Baehrecke EH, Wong EA (1991a) The role of host endocrine factors in the development of polyembryonic parasitoids. Biol Control 1:144–152

    Article  Google Scholar 

  • Strand MR, Goodman WG, Baehrecke E (1991b) The juvenile hormone titer of Trichoplusia ni and its potential role in embryogenesis of the polyembryonic wasp Copidosoma floridanum. Insect Biochem 21:205–214

    Article  CAS  Google Scholar 

  • Summers MD, Dib-Hajj SD (1995) Polydnavirus-facilitated endoparasite protection against host immune defense. Proc Natl Acad Sci U S A 92:29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachi S, Tachi C (1979) Ultrastructural studies on maternal embryonic cell interaction during experimentally induced implantation of rat blastocysts to the endometrium of the mouse. Dev Biol 68:203–223

    Article  CAS  PubMed  Google Scholar 

  • Tagashira E, Tanaka T (1998) Parasitic castration of Pseudaletia separate by Cotesia kariyai and its association with polydnavirus gene expression. J Insect Physiol 44:733–744

    Article  CAS  PubMed  Google Scholar 

  • Takahashi-Nakaguchi A, Hiraoka T, Iwabuchi K (2010) An ultrastructural study of polyembryonic parasitoid embryo and host embryo cell interactions. J Morphol 271:750–758

    Article  PubMed  Google Scholar 

  • Takahashi-Nakaguchi A, Hiraoka T, Iwabuchi K (2011) The carbohydrate ligands on the host embryo mediate intercellular migration of the parasitic wasp embryo. FEBS Lett 585:2295–2299

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi IK, Takeuchi YK (1981) Intercellular contacts between the embryonic or extraembryonic ectoderm and the primitive endoderm in rat egg cylinders prior to the formation of the primitive streak. Develop Growth Differ 23:157–164

    Article  Google Scholar 

  • Tan M, Jiang X (2005) Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. Trends Microbiol 13:285–293

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Wago H (1990) Ultrastructural and functional maturation of teratocytes of Apanteles kariyai. Arch Insect Biochem Physiol 13:187–197

    Article  CAS  Google Scholar 

  • Tarkowski AK (1962) Inter-specific transfer of eggs between rat and mouse. J Embryol Exp Morphol 10:476–495

    CAS  PubMed  Google Scholar 

  • Theopold U, Schmidt O (1997) Helix pomatia lectin and annexin V, two molecular probes for insect microparticles: possible involvement in hemolymph coagulation. J Insect Physiol 43:667–674

    Article  CAS  PubMed  Google Scholar 

  • Theopold U, Ekengren S, Hultmark D (1996a) HLH106m a Drosophila transcription factor with similarity to the vertebrate sterol responsive element binding protein. Proc Natl Acad Sci U S A 93:1195–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theopold U, Samakovlis C, Erdjument-Bromage H, Dillon N, Axelsson B, Schmidt O, Tempst P, Hultmark D (1996b) Helix pomatia lectin, an inducer of Drosophila immune response, binds to hemomucin, a novel surface mucin. J Biol Chem 271:12708–12715

    Article  CAS  PubMed  Google Scholar 

  • Tian C, Wang L, Ye G, Zhu S (2010) Inhibition of melanization by a Nasonia defensin-like peptide: implications for host immune suppression. J Insect Physiol 56:1857–1862

    Article  CAS  PubMed  Google Scholar 

  • Tojo S, Naganuma F, Arakawa K, Yokoo S (2000) Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, Galleria mellonella. J Insect Physiol 46:1129–1135

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto Y, Masarachia P, Schein SJ, Sterling P (1992) Gap junctions between the pedicles of macaque foveal cones. Vis Res 32:1809–1815

    Article  CAS  PubMed  Google Scholar 

  • Utsunomiya A, Iwabuchi K (2002) Interspecific competition between the polyembryonic wasp Copidosoma floridanum and the gregarious endoparasitoid Glyptapanteles pallipes. Entomol Exp Appl 104:353–362

    Article  Google Scholar 

  • van Die I, Cummings RD (2010) Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response? Glycobiology 20:2–12

    Article  PubMed  CAS  Google Scholar 

  • Vinson SB (1990) How parasitoids deal with the immune system of their host: an overview. Arch Insect Biochem Physiol 13:3–27

    Article  Google Scholar 

  • Vinson SB, Iwantsch GF (1980) Host regulation by insect parasitoids. Q Rev Biol 55:143–165

    Article  CAS  Google Scholar 

  • Wang ZZ, Ye XQ, Shi M, Li F, Wang ZH, Zhou YN, Gu QJ, Wu XT, Yin CL, Guo DH, Hu RM, Hu NN, Chen T, Zheng BY, Zou JN, Zhan LQ, Wei SJ, Wang YP, Huang JH, Fang XD, Strand MR, Chen XX (2018) Parasitic insect-derived miRNAs modulate host development. Nat Commun 9:2205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wani M, Yagi S, Tanaka T (1990) Synergistic effect of venom, calyx and teratocytes of Apanteles kariyai on the inhibition of larval-pupal ecdysis of the host, Psedaletia separate. Entomol Exp Appl 57:101–104

    Article  Google Scholar 

  • Webb BA (1998) Polydnavirus biology genome structure and evolution. In: Ball A, Miller LK (eds) The insect viruses. Plenum Press, New York, pp 105–139

    Chapter  Google Scholar 

  • Webb BA, Luckhart S (1994) Evidence for an early immunosuppressive role for related Campoletis sonorensis venom and ovarian proteins in Heliothis virescens. Arch Insect Biochem Physiol 26:147–163

    Article  CAS  PubMed  Google Scholar 

  • Webb BA, Strand MR (2005) The biology and genomics of polydnaviruses. In: Gilbert LI, Latrou K, Gill SS (eds) Comprehensive molecular insect science. Elsevier, San Diego, pp 323–360

    Chapter  Google Scholar 

  • Webb BA, Beckage NE, Hayakawa Y, Krell PJ, Lanzrein B, Stolz DB, Strand MR, Summers MD (2000) Polydnaviridae. In: van Regenmortel MHV, Maniloff J, Mayo MA, McGeoch DJ, Preingle CR, Wickner RB (eds) Virus taxonomy. Academic, New York, pp 253–260

    Google Scholar 

  • Wishart G, van Steenburgh WE (1934) A contribution to the technique of propagation of Chelonus annulipes Wesm, an imported parasite of the European corn borer. Can Entomol 66:121–124

    Article  Google Scholar 

  • Wu M-L, Ye G-T, Zhu JY, Chen X-X, Hu C (2008) Isolation and characterization of an immunosuppressive protein from venom of the pupa-specific endoparasitoid Pteromalus puparum. J Invertebr Pathol 99:186–191

    Article  CAS  PubMed  Google Scholar 

  • Wyler T, Lanzrein B (2003) Ovary development and polydnavirus morphogenesis in the parasitic wasp Chelonus inanitus. II. Ultrastructural analysis of calyx cell development, virion formation and release. J Gen Virol 84:1151–1163

    Article  CAS  PubMed  Google Scholar 

  • Yagi S, Tanaka T (1992) Retardation of testis development in the armyworm, Pseudaletia separate, parasitized by the braconid wasp Cotesia kariyai. Invertebr Reprod Dev 22:151–157

    Article  Google Scholar 

  • Yamashita M, Iwabuchi K (2001) Bombyx mori prohemocyte division and differentiation in individual microcultures. J Insect Physiol 47:325–331

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Dahlman DL, Gelman DB (1992) Juvenile hormone esterase activity and ecdysteroid titer in Heliothis virescens larvae injected with Microplitis croceipes teratocytes. Arch Insect Biochem Physiol 20:231–242

    Article  CAS  Google Scholar 

  • Zhang G, Schmidt O, Asgari S (2004) A novel venom peptide from an endoparasitoid wasp is required for expression of polydnavirus genes in host hemocytes. J Biol Chem 279:41580–41585

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iwabuchi, K. (2019). Host–Polyembryonic Parasitoid Interactions. In: Polyembryonic Insects. Entomology Monographs. Springer, Singapore. https://doi.org/10.1007/978-981-15-0958-2_3

Download citation

Publish with us

Policies and ethics