Skip to main content

BER Performance of CE-OFDM System: Over AWGN Channel and Frequency-Selective Channel Using MMSE Equalization

  • Conference paper
  • First Online:
Embedded Systems and Artificial Intelligence

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1076))

Abstract

The fifth generation (5G) wireless network technology is to be standardized by 2020, where main goals are to improve capacity, reliability, and energy efficiency. Constant envelope orthogonal frequency division multiplexing (CE-OFDM) is a technique to modify the OFDM signal with high peak-to-average power ratio (PAPR) to a constant envelope zero decibel PAPR waveform, in order to minimize energy consumption in future wireless communication systems (5G). The conventional CE-OFDM uses inverse discrete Fourier transform (IDFT) to calculate the signal time samples before feeding them to the phase modulator. In this paper, the performances of the CE-OFDM are studied in terms of the BER over AWGN channel and frequency-selective fading channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rappaport, T.S., Sun, S., Mayzus, R., et al.: Millimeter wave mobile communications for 5G cellular: it will work. IEEE Access 1, 335–349 (2013)

    Article  Google Scholar 

  2. Ghosh, A.: The 5G mmWave radio revolution. Microw. J. 59(9 Part I), 3–10 (2016)

    Google Scholar 

  3. Andrews, J.G., Buzzi, S., Choi, W., et al.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)

    Article  Google Scholar 

  4. Pi, Z., Khan, F.: An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 49(6), 101–107 (2011)

    Article  Google Scholar 

  5. Sulyman, A.I., Nassar, A.T., Samimi, M.K., et al.: Radio propagation path loss models for 5G cellular networks in the 28 and 38 GHz millimeter-wave bands. IEEE Commun. Mag. 52(9), 78–86 (2014)

    Article  Google Scholar 

  6. Kim, T., Park, J., Seol, J.Y., et al.: Tens of gbps support with mmWave beamforming systems for next generation communications. In: IEEE GlobeCom 13, pp. 3790–3795. Atlanta, GA, USA, 9–13 Dec 2013 (2013)

    Google Scholar 

  7. Roh, W., Seol, J.Y., Park, J., et al.: Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun. Mag. 52(2), 106–113 (2014)

    Article  Google Scholar 

  8. Zhang, J., Ge, X., Li, Q., et al.: 5G millimeter-wave antenna array: design and challenges. IEEE Wirel. Commun. 24(2), 106–112 (2017)

    Article  Google Scholar 

  9. Tan, J., Stuber, G.L.: Constant envelope multi-carrier modulation. In: Proceedings of IEEE Military Communications Conference, vol. 1, pp. 607–611, Anaheim (2002)

    Google Scholar 

  10. Yesodha, P.: VLSI implementation of fast fourier transform used in OFDM. Elixir Int. J. 1246012462, 7 Jan 2013 (2013)

    Google Scholar 

  11. van Nee, R., Awater, G., Morikura, M., Takanashi, H., Webster, M., Halford, K.W.: New high-rate wireless LAN standards. IEEE Commun. Mag. 82–88 (1999)

    Google Scholar 

  12. Moose, P.H., Roderick, D., North, R., Geile, M.: A COFDM-based radio for HDR LOS networked communications. In: Proceedings IEEE ICC, vol. 1, pp. 187–192 June (1999)

    Google Scholar 

  13. Koffman, I., Roman, V.: Broadband wireless access solutions based on OFDM access in IEEE 802.16. IEEE Commun. Mag. 96–103, Apr (2002)

    Google Scholar 

  14. Yang, H.: A road to future broadband wireless access: MIMO-OFDM based air interface. IEEE Commun. Mag. 53–60, Jan (2005)

    Google Scholar 

  15. Shepherd, S., Orriss, J., Barton, S.: Asymptotic limits in peak envelope power reduction by redundant coding in orthogonal frequency division multiplex modulation. IEEE Trans. Commun. 46(1), 5–10 (1998)

    Article  Google Scholar 

  16. Ochiai, H., Imai, H.: On the distribution of the peak-to-average power ratio in OFDM signals. IEEE Trans. Commun. 49(2), 282–289 (2001)

    Article  Google Scholar 

  17. Thompson, S.C.: Constant envelope OFDM phase modulation. Ph.D. dissertation, University of California, San Diego (2005). [Online]. Available: http://elsteve.com/thesis/

  18. Banelli, P.: Theoretical analysis and performance of OFDM signals in nonlinear fading channels. IEEE Trans. Wireless Commun. 2(2), 284–293 (2003)

    Article  Google Scholar 

  19. Cariolaro, G., Michieletto, G., Stivanello, G., Vangelista, L.: Spectral analysis at the output of a TWT driven by an OFDM signal. In: Proceedings ICCS, vol. 2, pp. 653–657, Singapore, Nov (1994)

    Google Scholar 

  20. Costa, E., Midrio, M., Pupolin, S.: Impact of amplifier nonlinearities on OFDM transmission system performance. IEEE Commun. Lett. 3(2), 37–39 (1999)

    Article  Google Scholar 

  21. Dardari, D., Tralli, V., Vaccari, A.: A theoretical characterization of nonlinear distortion effects in OFDM systems. IEEE Trans. Commun. 48(10), 1755–1764 (2000)

    Article  Google Scholar 

  22. Banelli, P., Baruffa, G., Cacopardi, S.: Effects of HPA non linearity on frequency multiplexed OFDM signals. IEEE Trans. Broadcast. 47(2), 123–136 (2001)

    Article  Google Scholar 

  23. Raab, F.H., Asbeck, P., Cripps, S., Kenington, P.B., Popovic, Z.B., Pothecary, N., Sevic, J.F., Sokal, N.O.: Power amplifiers and transmitters for RF and microwave. IEEE Trans. Microwave Theory Tech. 50(3), 814–826 (2002)

    Article  Google Scholar 

  24. Miller, S.L., O’Dea, R.J.: Peak power and bandwidth efficient linear modulation. IEEE Trans. Commun. 46(12), 1639–1648 (1998)

    Article  Google Scholar 

  25. Ochiai, H.: Power efficiency comparison of OFDM and single-carrier signals. In: Proceedings IEEE VTC, vol. 2. pp. 899–903, Sept (2002)

    Google Scholar 

  26. Wulich, D.: Definition of efficient PAPR in OFDM. IEEE Commun. Lett. 9(9), 832–834 (2005)

    Article  Google Scholar 

  27. Kiviranta, M., Mammela, A., Cabric, D., Sobel, D.A., Brodersen, R.W.: Constant envelope multicarrier modulation: performance evaluation in AWGN and fading channels. In: Proceedings IEEE Milcom, vol. 2, pp. 807–813 Oct (2005)

    Google Scholar 

  28. Abel Gouba, O.: Approche conjointe de la réduction du facteur de crête et de la linéarisation dans le contexte OFDM. May (2014)

    Google Scholar 

  29. Thompson, S.C.: Constant OFDM envelope phase modulation. Ph.D. dissertation, University of California, San Diego (2005)

    Google Scholar 

  30. Raab, F.H., Asbeck, P., Cripps, S., Kenington, P.B., Popovic, Z.B., Pothecary, N., Sevic, J.F., Sokal, N.O.: Power amplifiers and transmitters for RF and microwave. IEEE Trans. Microw. Theory Techn. 50(3), 814–826 (2005)

    Article  Google Scholar 

  31. Thompson, S.C., et al.: Constant envelope OFDM. IEEE Trans. Commun. 56(8), 1300–1312 (2008)

    Article  Google Scholar 

  32. Sari, H., Karam, G., Jeanclaude, I.: Transmission techniques for digital terrestrial TV broadcasting. IEEE Commun. Mag. 100–109 (1995)

    Google Scholar 

  33. Bello, P.A.: Characterization of randomly time-variant linear channels. IEEE Trans. Commun. 360–393 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mestoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mestoui, J., El Ghzaoui, M., El Yassini, K. (2020). BER Performance of CE-OFDM System: Over AWGN Channel and Frequency-Selective Channel Using MMSE Equalization. In: Bhateja, V., Satapathy, S., Satori, H. (eds) Embedded Systems and Artificial Intelligence. Advances in Intelligent Systems and Computing, vol 1076. Springer, Singapore. https://doi.org/10.1007/978-981-15-0947-6_7

Download citation

Publish with us

Policies and ethics