Skip to main content

Laser Heat-Mode Lithography Using Organic Thin Films

  • Chapter
  • First Online:
Laser Heat-Mode Lithography

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 291))

  • 447 Accesses

Abstract

Generally, the laser heat-mode lithography materials are from inorganic chalcogenide phase-change thin films due to selective wet etching between crystalline and amorphous phases [1, 2]. Actually, some organic thin films can be also used as heat-mode lithography materials [3,4,5,6,7,8], and the lithography is completed through a single-step process, where the pattern structures are directly produced through laser-induced thermal gasification, thermal decomposition, or thermal deformation, and no developing process is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Dun, J. Wei, F. Gan, Laser direct writing pattern structures on AgInSbTe phase change thin film. Chin. Opt. Lett. 9, 082101 (2011)

    Article  ADS  Google Scholar 

  2. J. Wei, K. Zhang, T. Wei, Y. Wang, Y. Wu, M. Xiao, High-speed maskless nanolithography with visible light based on photothermal localization. Sci. Rep. 7, 43892 (2017)

    Article  ADS  Google Scholar 

  3. Z. Chen, Y. Wu, F. Huang, D. Gu, F. Gan, Optical properties of nickel(II)-azo complexes thin films for potential application as high-density recordable optical recording media. Solid State Commun. 141(1), 1–5 (2007)

    Article  ADS  Google Scholar 

  4. H. W. Wu, M. C. Li, C. T. Yang, C. T. Cheng, S. C. Chen, D. R. Huang, Organic thermal mode photoresists for applications in nanolithography. Suppl. Proc. Mater. Process. Interfaces 1, 663–668 (2012)

    Article  Google Scholar 

  5. C. Deng, Y. Geng, Y. Wu, New calix[4]arene derivatives as maskless and development-free laser thermal lithography materials for fabricating micro/nano-patterns. J. Mater. Chem. C 1(13), 2470–2476 (2013)

    Article  Google Scholar 

  6. K. Zhang, Z. Chen, Y. Geng, Y. Wang, Y. Wu, Nanoscale-resolved patterning on metal hydrazone complex thin films using diode-based maskless laser writing in the visible light regime. Chin. Opt. Lett. 14(5), 051401 (2016)

    Article  ADS  Google Scholar 

  7. T. Sakai, M. Shimo, N. Takamori, Y. Murakami, A. Takahashi, Resin material dependence of pit shape in thermal direct mastering. Jpn. J. Appl. Phys. 46(6S), 3942 (2007)

    Article  ADS  Google Scholar 

  8. M. Kuwahara, J. H. Kim, J. Tominaga, Dot formation with 170-nm dimensions using a thermal lithography technique. Microelectron. Eng. 67, 651–656 (2003)

    Article  Google Scholar 

  9. K. Zhang, Z. Chen, J. Wei, T. Wei, Y. Geng, Y. Wang, Y. Wu, A study on one-step laser nanopatterning onto copper–hydrazone-complex thin films and its mechanism. Phys. Chem. Chem. Phys. 19(20), 13272–13280 (2017)

    Article  Google Scholar 

  10. S. Liu, J. Wei, F. Gan, Optical nonlinear absorption characteristics of crystalline Ge2Sb2Te5 thin films. J. Appl. Phys. 110, 033503 (2011)

    Article  ADS  Google Scholar 

  11. G. D. Kozak, A. Y. Vasin, A. V. D’yachkova, Estimating the explosion hazard of aromatic azo compounds. Combust. Explosion Shock Waves 44(5), 579–582 (2008)

    Article  Google Scholar 

  12. T. He, Y. Cheng, Y. Du, Y. Mo, Z-scan determination of third-order nonlinear optical nonlinearity of three azobenzenes doped polymer films. Opt. Commun. 275, 240–244 (2007)

    Article  ADS  Google Scholar 

  13. D. Zhao, H. Jain, L. C. Malacarne, P. R. B. Pedreira, Role of photothermal effect in photoexpansion of chalcogenide glasses. Phys. Status Solidi B 250, 983–987 (2013)

    Article  ADS  Google Scholar 

  14. K. Tanaka, A. Saitoh, N. Terakado, Giant photo-expansion in chalcogenide glass. J. Optoelectron. Adv. Mater. 8, 2058–2065 (2006)

    Google Scholar 

  15. S. N. Yannopoulos, M. L. Trunov, Photoplastic effects in chalcogenide glasses: a review. Phys. Status Solidi B 246, 1773–1785 (2009)

    Article  ADS  Google Scholar 

  16. Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, K. Ichikawa, 405 nm laser thermal lithography of 40 nm pattern using super resolution organic resist material. Appl. Phys. Express 2(12), 126502 (2009)

    Article  ADS  Google Scholar 

  17. D. T. T. Nguyen, Q. C. Tong, I. Ledoux-Rak, N. D. Lai, One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect. J. Appl. Phys. 119(1), 013101 (2016)

    Article  ADS  Google Scholar 

  18. Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, N. D. Lai, Direct laser writing of polymeric nanostructures via optically induced local thermal effect. Appl. Phys. Lett. 108(18), 183104 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingsong Wei .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wei, J. (2019). Laser Heat-Mode Lithography Using Organic Thin Films. In: Laser Heat-Mode Lithography. Springer Series in Materials Science, vol 291. Springer, Singapore. https://doi.org/10.1007/978-981-15-0943-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0943-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0942-1

  • Online ISBN: 978-981-15-0943-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics