Skip to main content

Nanopolysaccharides in Barrier Composites

  • Chapter
  • First Online:

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 15))

Abstract

The purpose of a barrier layer or film in a packaging product is to slow down or essentially eliminate the progress of oxygen, water vapor, or other molecules, thereby extending the shelf life, safety, and maybe also the taste of products—especially in the case of foods. This chapter discusses progress in the preparation of barrier composite films that include nanopolysaccharides, such as nanochitin, nanostarch, and nanocellulose. The reviewed research shows that these eco-friendly components in the resulting films often can improve barrier properties. While nanocellulose has attracted more research attention, nanostarch particles can be prepared under less aggressive chemical conditions, and particles related to chitin might possibly be preferred when one of the goals is to achieve antimicrobial effects. Nanopolysaccharides are also likely to find future applications in barrier films containing montmorillonite clay (nanoclay) and in multi-layer barrier film systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bharimalla AK, Deshmukh SP, Vigneshwaran N et al (2017) Nanocellulose-polymer composites for applications in food packaging: current status, future prospects and challenges. Polym-Plast Technol Eng 56:805–823

    Article  CAS  Google Scholar 

  2. Abdul Khalil HPS, Bhat AH, Yusra AFI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979

    Article  CAS  Google Scholar 

  3. Abdul Khalil HPS, Saurabh CK, Adnan AS et al (2016) A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: properties and their applications. Carbohydr Polym 15:216–226

    Google Scholar 

  4. Khalil HPSA, Tye YY, Sourabh CK et al (2017) Biodegradable polymer films from seaweed polysaccharides: a review on cellulose as a reinforcement material. eXPRESS Polym Lett 11:244–265

    Article  CAS  Google Scholar 

  5. Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253

    Article  CAS  Google Scholar 

  6. Azeredo HMC, Rosa MF, Mattoso LHC (2017) Nanocellulose in bio-based food packaging applications. Indust Crops Prod 97:664–671

    Article  CAS  Google Scholar 

  7. Berglund LA, Peijs T (2010) Cellulose biocomposites—From bulk moldings to nanostructured systems. MRS Bull 35:201–207

    Article  CAS  Google Scholar 

  8. Castro-Rosas J, Cruz-Galvez AM, Gomez-Aldapa CA et al (2016) Biopolymer films and the effects of added lipids, nanoparticles and antimicrobials on their mechanical and barrier properties: a review. Intl J Food Sci Technol 51:1967–1978

    Article  CAS  Google Scholar 

  9. Chakrabarty A, Teramoto Y (2018) Review. Recent advances in nanocellulose composites with polymers: a guide for choosing partners and how to incorporate them. Polymers 10: article no 517

    Article  CAS  Google Scholar 

  10. Dufresne A (2010) Processing of polymer nanocomposites reinforced with polysaccharide nanocrystals. Molecules 15:4111–4128

    Article  CAS  Google Scholar 

  11. Dufresne A, Castano J (2017) Polysaccharide nanomaterial reinforced starch nanocomposites: a review. Starch-Starke 69: article no 1500307

    Article  CAS  Google Scholar 

  12. Feldman D (2013) Polymer nanocomposite barriers. J Macromol Sci Part A Pure Appl Chem 50:441–448

    Article  CAS  Google Scholar 

  13. Ferreira FV, Dufresne A, Pinheiro IF et al (2018) How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: a comprehensive review. Eur Polym J 108:274–285

    Article  CAS  Google Scholar 

  14. Ferrer A, Pal L, Hubbe M (2017) Nanocellulose in packaging: advances in barrier layer technologies. Indust Crops Prod 95:574–582

    Article  CAS  Google Scholar 

  15. Freire CSR, Fernandes SCM, Silvestre AJD et al (2013) Novel cellulose-based composites based on nanofibrillated plant and bacterial cellulose: recent advances at the University of Aveiro—a review. Holzforschung 67:603–612

    Article  CAS  Google Scholar 

  16. Ilyas RA, Sapuan SM, Sanyang ML et al (2018) Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: a review. Current Anal Chem 14:203–225

    Article  CAS  Google Scholar 

  17. Kargarzadeh H, Mariano M, Huang J et al (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132:368–393

    Article  CAS  Google Scholar 

  18. Khan A, Huq T, Khan RA et al (2014) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci Nutr 54:163–174

    Article  CAS  Google Scholar 

  19. Kumar N, Kaur P, Bhatia S (2017) Advances in bio-nanocomposite materials for food packaging: a review. Nutrition Food Sci 47:591–606

    Google Scholar 

  20. Mondal S (2018) Review on nanocellulose polymer nanocomposites. Polymer-Plastics Technol Eng 57:1377–1391

    Article  CAS  Google Scholar 

  21. Paunonen S (2013) Strength and barrier enhancements of cellophane and cellulose derivative films: a review. BioResources 8:3098–3121

    Article  Google Scholar 

  22. Paunonen S (2013) Strength and barrier enhancements of composites and packaging boards by nanocelluloses—a literature review. Nordic Pulp Paper Res J 28:165–181

    Article  CAS  Google Scholar 

  23. Perez-Pacheco E, Canto-Pinto JC, Moo-Huchin VM et al (2016) Thermoplastic starch (TPS)-cellulosic fibers composites: mechanical properties and water vapor barrier: a review. In: Poletto M (ed) Composites from renewable and sustainable materials. INTEACH, pp 85–105

    Google Scholar 

  24. Sanchez-Garcia MD, Lopez-Rubio A, Lagaron JM (2010) Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends Food Sci Technol 21(11):528–536

    Article  CAS  Google Scholar 

  25. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  26. Stark NM (2016) Opportunities for cellulose nanomaterials in packaging films: a review and future trends. J Renewable Mater 4:313–326

    Article  CAS  Google Scholar 

  27. Vasile C (2018) Polymeric nanocomposites and nanocoatings for food packaging: A review. Materials 11: article no 1834

    Article  CAS  Google Scholar 

  28. Robertson GL (2013) Food packaging principles and practice, 3rd edn. CRC Press. Taylor & Francis, Boca Raton, p 703

    Google Scholar 

  29. Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75:R43–R49

    Article  CAS  Google Scholar 

  30. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24

    Article  CAS  Google Scholar 

  31. Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782

    Article  CAS  Google Scholar 

  32. Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. In: Chen NL, Man HC, Talib RA (eds) 2nd international conference on agricultural and food engineering (CAFE 2014)—new trends forward. Book series: agriculture and agricultural science procedia vol 2, pp 296–303

    Article  Google Scholar 

  33. Bledski AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  Google Scholar 

  34. Hubbe MA, Rojas OJ, Lucia LA et al (2008) Cellulosic nanocomposites. A review. BioResources 3:929–980

    Google Scholar 

  35. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties, and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  36. Lindstrom T, Aulin C (2014) Market and technical challenges and opportunities in the area of innovative new materials and composites based on nanocellulosics. Scand J Forest Res 29:345–351

    Article  Google Scholar 

  37. Cagri A, Ustunol Z, Ryser ET (2004) Antimicrobial edible films and coatings. J Food Protection 67:833–848

    Article  CAS  Google Scholar 

  38. Chivrac F, Pollet E, Avérous L (2009) Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater Sci Eng: R Reports 67:1–17

    Article  CAS  Google Scholar 

  39. Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10–11):1629–1652

    Article  CAS  Google Scholar 

  40. Mohanty F, Swain SK (2018) Bionanocomposites for food packaging applications. In: Oprea AE, Grumezescu AM (eds) Nanotechnology applications in food. flavor, stability, nutrition and safety. Elsevier BV, Amsterdam. (Ch 18)

    Chapter  Google Scholar 

  41. Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromol 9(6):1493–1505

    Article  CAS  Google Scholar 

  42. Tavassoli-Kafrani E, Shekarchizadeh H, Masoudpour-Behabadi M (2016) Development of edible films and coatings from alginates and carrageenans. Carbohydr Polym 137:360–374

    Article  CAS  Google Scholar 

  43. Porta R, Mariniello L, Di Pierro P et al (2011) Transglutaminase crosslinked pectin- and chitosan-based edible films: a review. Crit Rev Food Sci Nutrition 51:223–238, article no PII 934350148

    Article  CAS  Google Scholar 

  44. Hassan B, Chatha SAS, Hussain AI et al (2018) Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Intl J Biol Macromol 109:1095–1107

    Article  CAS  Google Scholar 

  45. Hubbe MA, Ferrer A, Tyagi P et al (2017) Nanocellulose in thin films, coatings, and plies for packaging applications: a review. BioResources 12:2143–2233

    CAS  Google Scholar 

  46. Lange J, Wyser Y (2003) Recent innovations in barrier technologies for plastic packaging—a review. Pack Technol Sci 16:149–158

    Article  CAS  Google Scholar 

  47. Li F, Mascheroni E, Piergiovanni L (2015) The potential of nanocellulose in the packaging field: a review. Packag Technol Sci 28:475–508

    Article  CAS  Google Scholar 

  48. Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromol 28:6365–6367

    Article  CAS  Google Scholar 

  49. Abdollahi M, Alboofetileh M, Behrooz R et al (2013) Reducing water sensitivity of alginate bio-nanocomposite films using cellulose nanoparticles. Int J Biol Macromol 54:166–173

    Article  CAS  Google Scholar 

  50. Abdulkhani A, Hosseinzadeh J, Dadashi S et al (2015) A study of morphological, thermal, mechanical and barrier properties of PLA based biocomposites prepared with micro and nano sized cellulosic fibers. Cellulose Chem Technol 49(7–8):597–605

    CAS  Google Scholar 

  51. Chang PR, Jian RJ, Yu J et al (2010) Starch-based composites reinforced with novel chitin nanoparticles. Carbohyd Polym 80:420–425

    Article  CAS  Google Scholar 

  52. Chang PR, Jian RJ, Yu JG et al (2010) Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chem 120:736–740

    Article  CAS  Google Scholar 

  53. Chang PR, Jian RJ, Zheng PW et al (2010) Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohyd Polym 79:301–305

    Article  CAS  Google Scholar 

  54. Corsello FA, Bolla PA, Anbinder PS et al (2017) Morphology and properties of neutralized chitosan-cellulose nanocrystals biocomposite films. Carbohydr Polym 156:452–459

    Article  CAS  Google Scholar 

  55. El Miri N, Abdelouandi K, Barakat A et al (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167

    Article  CAS  Google Scholar 

  56. Fernandes SCM, Freire CSR, Silvestre AJD et al (2010) Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr Polym 81:394–401

    Article  CAS  Google Scholar 

  57. Heshmati V, Kamal MR, Favis BD (2018) Cellulose nanocrystal in poly(lactic acid)/polyamide11 blends: Preparation, morphology and co-continuity. Eur Polym J 98:11–20

    Article  CAS  Google Scholar 

  58. Hossain KMZ, Jasmani L, Ahmed I et al (2012) High cellulose nanowhisker content composites through cellosize bonding. Soft Matter 8:12099–12110

    Article  CAS  Google Scholar 

  59. Ji YL, Wang XM, Liang K (2014) Regulating the mechanical properties of poly(1,8-octanediol citrate) bioelastomer via loading of chitin nanocrystals. RSC Advan 4:41357–41363

    Article  CAS  Google Scholar 

  60. Khan A, Khan RA, Salmieri S et al (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601–1608

    Article  CAS  Google Scholar 

  61. Kord B, Malekian B, Yousefi H et al (2016) Preparation and characterization of nanofibrillated cellulose/poly (vinyl alcohol) composite films. Maderas Cienc Tecnol 18:743–752

    CAS  Google Scholar 

  62. Kvien I, Oksman K (2007) Orientation of nanowhiskers in polyvinyl alcohol. Appl Phys A Mater Sci Process 87:641–643

    Article  CAS  Google Scholar 

  63. Lee SY, Mohan DJ, Kang IA et al (2009) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers Polymers 10:77–82

    Article  CAS  Google Scholar 

  64. Li DF, Moriana R, Ek M (2016) From forest residues to hydrophobic nanocomposites with high oxygen-barrier properties. Nordic Pulp Paper Res J 31:261–269

    Article  CAS  Google Scholar 

  65. Ljungberg N, Bonini C, Bortolussi F et al (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: Effect of surface and dispersion characteristics. Biomacromol 6:2732–2739

    Article  CAS  Google Scholar 

  66. Ljungberg N, Cavaillé JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47:6285–6292

    Article  CAS  Google Scholar 

  67. Ma L, Wang LL, Wu LX et al (2014) Cellulosic nanocomposite membranes from hydroxypropyl cellulose reinforced by cellulose nanocrystals. Cellulose 21:4443–4454

    Article  CAS  Google Scholar 

  68. Pereda M, Amica G, Rácz I et al (2011) Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J Food Eng 103:76–83

    Article  CAS  Google Scholar 

  69. Pereda M, Dufresne A, Aranguren ME et al (2014) Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydr Polym 101:1018–1026

    Article  CAS  Google Scholar 

  70. Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Composites Sci Technol 67(11–12):2535–2544

    Article  CAS  Google Scholar 

  71. Sanchez-Garcia MD, Hilliou L, Lagaron JM (2010) Morphology and water barrier properties of nanobiocomposites of k/i-hybrid carrageenan and cellulose nanowhiskers. J Agric Food Chem 58:12847–12857

    Article  CAS  Google Scholar 

  72. Sanchez-Garcia M, Lagaron J (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17:987–1004

    Article  CAS  Google Scholar 

  73. Savadekar NR, Karande VS, Vigneshwaran N et al (2014) Preparation of cellulose nano-whiskers and its effect on performance properties of k-carrageenan. J Biomased Mater Bioenergy 8:618–626

    Article  CAS  Google Scholar 

  74. Savadekar NR, Karande VS, Vigneshwaran N et al (2012) Preparation of nanocellulose fibers and its application in kappa-carrageenan based film. Intl J Biol Macromol 51:1008–1013

    Article  CAS  Google Scholar 

  75. Savadekar NR, Karande VS, Vigneshwaran N et al (2015) Preparation of cotton linter nanowhiskers by high-pressure homogenization process and its application in thermoplastic starch. Appl Nanosci 5:281–290

    Article  CAS  Google Scholar 

  76. Shankar S, Reddy JP, Rhim JW et al (2015) Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydr Polym 117:468–475

    Article  CAS  Google Scholar 

  77. Soni B, Hassan E, Schilling MW et al (2016) Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties. Carbohydr Polym 151:779–789

    Article  CAS  Google Scholar 

  78. Sriupayo J, Supaphol P, Blackwell J et al (2005) Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. Carbohydr Polym 62:130–136

    Article  CAS  Google Scholar 

  79. Sriupayo J, Supaphol P, Blackwell J et al (2005) Preparation and characterization of alpha-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite films with or without heat treatment. Polymer 46:5637–5644

    Article  CAS  Google Scholar 

  80. Viguie J, Molina-Boisseau S, Dufresne A (2007) Processing and characterization of waxy maize starch films plasticized by sorbitol and reinforced with starch nanocrystals. Macromol Biosci 7:1206–1216

    Article  CAS  Google Scholar 

  81. Zarina S, Ahmad I (2015) Biodegradable composite films based on κ-carrageenan reinforced by cellulose nanocrystal from kenaf fibers. BioResources 10:256–271

    Google Scholar 

  82. Alloin F, D’Aprea A, Dufresne A et al (2011) Poly(oxyethylene) and ramie whiskers based nanocomposites: Influence of processing: Extrusion and casting/evaporation. Cellulose 18:957–973

    Article  CAS  Google Scholar 

  83. Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14(7–9):617–630

    Article  CAS  Google Scholar 

  84. Charlon S, Follain N, Chappey C et al (2015) Improvement of barrier properties of bio-based polyester nanocomposite membranes by water-assisted extrusion. J Membrane Sci 496:185–198

    Article  CAS  Google Scholar 

  85. Dhar P, Gaur SS, Soundararajan N et al (2017) Reactive extrusion of polylactic acid/cellulose nanocrystal films for food packaging applications: Influence of filler type on thermomechanical, rheological, and barrier properties. Indust Eng Chem Res 56:4718–4735

    Article  CAS  Google Scholar 

  86. Karkhanis SS, Stark NM, Sabo RC et al (2018) Water vapor and oxygen barrier properties of extrusion-blown poly(lactic acid)/cellulose nanocrystals nanocomposite films. Compos Part A Appl Sci Manuf 114:204–211

    Article  CAS  Google Scholar 

  87. Lemahieu L, Bras J, Tiquet P et al (2011) Extrusion of nanocellulose-reinforced nanocomposites using the dispersed nano-objects protective encapsulation (DOPE) process. Macromol Mater Eng 296:984–991

    Article  CAS  Google Scholar 

  88. Lu P, Xiao HN, Zhang WW et al (2014) Reactive coating of soybean oil-based polymer on nanofibrillated cellulose film for water vapor barrier packaging. Carbohyd Polym 111:524–529

    Article  CAS  Google Scholar 

  89. Martinez-Sanz M, Lopez-Rubio A, Lagaron JM (2012) Optimization of the dispersion of unmodified bacterial cellulose nanowhiskers into polylactide via melt compounding to significantly enhance barrier and mechanical properties. Biomacromol 13:3887–3899

    Article  CAS  Google Scholar 

  90. Natterodt JC, Shirole A, Sapkota J et al (2018) Polymer nanocomposites with cellulose nanocrystals made by co-precipitation. J Appl Polym Sci 135(24), article no 445648

    Article  CAS  Google Scholar 

  91. Sapkota J, Natterodt JC, Shirole A et al (2017) Fabrication and properties of polyethylene/cellulose nanocrystal composites. Macromol Mater Eng 302: article no 1600300

    Article  CAS  Google Scholar 

  92. Nair SS, Kuo PY, Chen HY, Yan N (2017) Investigating the effect of lignin on the mechanical, thermal, and barrier properties of cellulose nanofibril reinforced epoxy composite. Indust Crops Prod 100:208–217

    Article  CAS  Google Scholar 

  93. Kong XH, Wolodko J, Zhao LY et al (2018) The preparation and characterization of polyurethane reinforced with a low fraction of cellulose nanocrystals. Prog Organic Coatings 125:207–214

    Article  CAS  Google Scholar 

  94. Garcia de Rodriguez NLG, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270

    Article  CAS  Google Scholar 

  95. Chen C, Wei M, Chen J et al (2008) Simultaneous reinforcing and toughening: New nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals. Polymer 49:1860–1870

    Article  CAS  Google Scholar 

  96. Mittal V (2011) Nanocomposites with biodegradable polymers. Synthesis, properties, and future perspectives. Oxford Scholarship Online, 1020

    Google Scholar 

  97. Li SCY, Sun YC, Guan Q et al (2016) Effects of chitin nanowhiskers on the thermal, barrier, mechanical, and rheological properties of polypropylene nanocomposites. RSC Advan 6:72086–72095

    Article  CAS  Google Scholar 

  98. Fotie G, Rampazzo R, Ortenzi MA et al (2017) The effect of moisture on cellulose nanocrystals intended as a high gas barrier coating on flexible packaging materials. Polymers 9: article no 415

    Article  CAS  Google Scholar 

  99. Majeed K, Hassan A, Abu Bakar A (2017) Barrier, biodegradation, and mechanical properties of (rice husk)/(montmorillonite) hybrid filler-filled low-density polyethylene nanocomposite films. J Vinyl Additive Technol I23:162–171

    Article  CAS  Google Scholar 

  100. Yuwawech K, Wootthikanokkhan J, Tanpichai S (2018) Transparency, moisture barrier property, and performance of the alternative solar cell encapsulants based on PU/PVDC blend reinforced with different types of cellulose nanocrystals. Mater Renew Sustain Energy 7: article no 21

    Google Scholar 

  101. Forsgren L, Sahlin-Sjovold K, Venkatesh A et al (2019) Composites with surface-grafted cellulose nanocrystals (CNC). J Mater Sci 54:3009–3022

    Article  CAS  Google Scholar 

  102. Medina E, Caro N, Abugoch L et al (2019) Chitosan thymol nanoparticles improve the antimicrobial effect and the water vapour barrier of chitosan-quinoa protein films. J Food Eng 240:191–198

    Article  CAS  Google Scholar 

  103. Barnes DKA, Galgani F, Thompson RC et al (2009) Accumulation and fragmentation of plastic debris in global environments. Phil Trans Royal Soc B - Biol Sci 364(1526):1985–1998

    Article  CAS  Google Scholar 

  104. Mrkic S, Galic K, Ivankovic M et al (2006) Gas transport and thermal characterization of mono- and di-polyethylene films used for food packaging. J Appl Polym Sci 99:1590–1599

    Article  CAS  Google Scholar 

  105. LeCorre D, Dufresne A, Rueff M et al (2014) All starch nanocomposite coating for barrier material. J Appl Polymer Sci 131: article no 39826

    Google Scholar 

  106. Xu XZ, Liu F, Jiang L et al (2013) Cellulose nanocrystals vs cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfac 5:2999–3009

    Article  CAS  Google Scholar 

  107. Yu HY, Zhang H, Song ML et al (2017) From cellulose nanospheres, nanorods to nanofibers: various aspect ratio induced nucleation/reinforcing effects on polylactic acid for robust-barrier food packaging. ACS Appl Mater Interfaces 9:43920–43938

    Article  CAS  Google Scholar 

  108. Abdullah ZW, Dong Y (2018) Recent advances and perspectives on starch nanocomposites for packaging applications. J Mater Sci 53:15319–15339

    Article  CAS  Google Scholar 

  109. Bagheriasl D, Carreau PJ, Riedl B et al (2018) Enhanced properties of polylactide by incorporating cellulose nanocrystals. Polym Compos 39:2685–2694

    Article  CAS  Google Scholar 

  110. Chi K, Catchmark JM (2017) Enhanced dispersion and interface compatibilization of crystalline nanocellulose in polylactide by surfactant adsorption. Cellulose 24:4845–4860

    Article  CAS  Google Scholar 

  111. Espino-Perez E, Bras J, Almeida G et al (2018) Designed cellulose nanocrystal surface properties for improving barrier properties in polylactide nanocomposites. Carbohydr Polym 183:267–277

    Article  CAS  Google Scholar 

  112. Espino-Perez E, Bras J, Ducruet V et al (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49:3144–3154

    Article  CAS  Google Scholar 

  113. Fortunati E, Peltzer M, Armentano I et al (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90:948–956

    Article  CAS  Google Scholar 

  114. Frone AN, Berlioz S, Chailan JF et al (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohyd Polym 91:377–384

    Article  CAS  Google Scholar 

  115. Frone AN, Berlioz S, Chailan JF et al (2011) Cellulose fiber-reinforced polylactic acid. Polym Compos 32:976–985

    Article  CAS  Google Scholar 

  116. Fukuzumi H, Saito T, Wata T et al (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromol 10:162–165

    Article  CAS  Google Scholar 

  117. Iwataki A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106

    Article  CAS  Google Scholar 

  118. Martinez-Sanz M, Abdelwahab MA, Lopez-Rubio A et al (2013) Incorporation of poly(glycidylmethacrylate) grafted bacterial cellulose nanowhiskers in poly(lactic acid) nanocomposites: improved barrier and mechanical properties. Eur Polym J 49:2062–2072

    Article  CAS  Google Scholar 

  119. Pal AK, Katiyar V (2016) Nanoamphiphilic chitosan dispersed poly(lactic acid) bionanocomposite films with improved thermal, mechanical, and gas barrier properties. Biomacromol 17:2603–2618

    Article  CAS  Google Scholar 

  120. Satam CC, Irvin CW, Lang AW et al (2018) Spray-coated multilayer cellulose nanocrystal-chitin nanofiber films for barrier applications. ACS Sustain Chem Eng 6:10637–10644

    Article  CAS  Google Scholar 

  121. Song ZP, Xiao HN, Zhao Y (2014) Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohydr Polym 111:442–448

    Article  CAS  Google Scholar 

  122. Annamalai PK, Depan D (2015) Nano-cellulose reinforced chitosan nanocomposites for packaging and biomedical applications. In: Thakur VK, Kessler MR (eds) Green biorenewable biocomposites: from knowledge to industrial applications. CRC Press, Taylor and Francis, Boca Raton, pp 489–506

    Chapter  Google Scholar 

  123. Antoniou J, Liu F, Majeed H et al (2015) Characterization of tara gum edible films incorporated with bulk chitosan and chitosan nanoparticles: a comparative study. Food Hydrocolloids 44:309–319

    Article  CAS  Google Scholar 

  124. Azeredo HMC, Miranda KWE, Rosa MF et al (2012) Edible films from alginate-acerola puree reinforced with cellulose whiskers. LWT-Food Sci Technol 46: 294–297

    Article  CAS  Google Scholar 

  125. Barud. HS, Souza JL, Santos DB et al (2011) Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes Carbohydr Polym 83: 1279–1284

    Google Scholar 

  126. Bilbao-Sainz CB, Bras J, Williams T (2011) HPMC reinforced with different cellulose nanoparticles. Carbohyd Polym 86:1549–1557

    Article  CAS  Google Scholar 

  127. Carvalho RA, Santos TA, de Azevedo VM et al (2018) Bio-nanocomposites for food packaging applications: effect of cellulose nanofibers on morphological, mechanical, optical and barrier properties. Polym Intl 67:386–392

    Article  CAS  Google Scholar 

  128. Chen Y, Cao X, Chang PR et al (2008) Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr Polym 73:8–17

    Article  CAS  Google Scholar 

  129. Chi K, Catchmark JM (2018) Improved eco-friendly barrier materials based on crystalline nanocellulose/chitosan/carboxymethyl cellulose polyelectrolyte complexes. Food Hydrocolloids 80:195–205

    Article  CAS  Google Scholar 

  130. Deepa B, Abraham E, Pothan LA et al (2016) Biodegradable nanocomposite films based on sodium alginate and cellulose nanofibrils. Materials 9:1–11 article no 9010050

    Article  CAS  Google Scholar 

  131. Deng ZL, Jung J, Simonsen J et al (2017) Cellulose nanocrystal reinforced chitosan coatings for improving the storability of postharvest pears under both ambient and cold storages. J Food Sci 82:453–462

    Article  CAS  Google Scholar 

  132. Dhar P, Bhardwaj U, Kumar A et al (2015) Poly (3-hydroxybutyrate)/ cellulose nanocrystal films for food packaging applications: barrier and migration studies. Polym Eng Sci 55:2388–2395

    Article  CAS  Google Scholar 

  133. Fang DL, Deng ZL, Jung J et al (2018) Mushroom polysaccharides-incorporated cellulose nanofiber films with improved mechanical, moisture barrier, and antioxidant properties. J Appl Polymer Sci 135: article no 46166

    Article  CAS  Google Scholar 

  134. Gea S, Bilotti E, Reynolds CT, Soykeabkeaw N et al (2010) Bacterial cellulose-poly(vinyl alcohol) nanocomposites prepared by an in-situ process. Mater Lett 64:901–904

    Article  CAS  Google Scholar 

  135. George J, Siddaramaiah (2012) High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydr Polym 87:2031–2037

    Article  CAS  Google Scholar 

  136. Gicquel E, Martin C, Yanez JG et al (2017) Cellulose nanocrystals as new bio-based coating layer for improving fiber-based mechanical and barrier properties. J Mater Sci 52:3048–3061

    Article  CAS  Google Scholar 

  137. Grande CJ, Torres FG, Gomez CM et al (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5:1605–1615

    Article  CAS  Google Scholar 

  138. Grande CJ, Torres FG, Gomez CM et al (2009) Development of self-assembled bacterial cellulose-starch nanocomposites. Mater Sci Eng, C 29:1098–1104

    Article  CAS  Google Scholar 

  139. Huq T, Salmieri S, Khan A et al (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohyd Polym 90:1757–1763

    Article  CAS  Google Scholar 

  140. Johnson RK, Zink-Sharp A, Renneckar SH et al (2009) A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16:227–238

    Article  CAS  Google Scholar 

  141. Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345

    Article  CAS  Google Scholar 

  142. Li MC, Mei CT, Xu XW et al (2016) Cationic surface modification of cellulose nanocrystals: toward tailoring dispersion and interface in carboxymethyl cellulose films. Polymer 107:200–210

    Article  CAS  Google Scholar 

  143. Li W, Wu Q, Zhao X, Huang Z et al (2014) Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils. Carbohydr Polymers 113:403–410

    Article  CAS  Google Scholar 

  144. Li W, Zhao X, Huang Z, Liu S (2013) Nanocellulose fibrils isolated from BHKP using ultrasonication and their reinforcing properties in transparent poly (vinyl alcohol) films. J Polymer Res 20: article no 210

    Google Scholar 

  145. Ma Q, Hu D, Wang L (2016) Preparation and physical properties of tara gum film reinforced with cellulose nanocrystals. Intl J Biol Macromol 86:606–612

    Article  CAS  Google Scholar 

  146. Mandal A, Chakrabarty D (2014) Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly(vinyl alcohol) and nanocellulose from sugarcane bagasse. J Indust Eng Chem 20:462–473

    Article  CAS  Google Scholar 

  147. Nasseri R, Mohammadi N (2014) Starch-based nanocomposites: a comparative performance study of cellulose whiskers and starch nanoparticles. Carbohydr Polym 106:432–439

    Article  CAS  Google Scholar 

  148. Oun AA, Rhim JW (2015) Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydr Polym 127:101–109

    Article  CAS  Google Scholar 

  149. Oun AA, Rhim JW (2016) Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydr Polym 150:187–200

    Article  CAS  Google Scholar 

  150. Oun AA, Rhim JW (2017) Effect of oxidized chitin nanocrystals isolated by ammonium persulfate method on the properties of carboxymethyl cellulose-based films. Carbohydr Polym 175:712–720

    Article  CAS  Google Scholar 

  151. Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membrane Sci 320:248–258

    Article  CAS  Google Scholar 

  152. Silverio HA, Neto WPF, Pasquini D (2013) Effect of incorporating cellulose nanocrystals from corncob on the tensile, thermal and barrier properties of poly(vinyl alcohol) nanocomposites. J Nanomater, article no 289641

    Google Scholar 

  153. Sirviö JA, Kolehmainen A, Liimatainen H et al (2014) Biocomposite cellulose-alginate films: promising packaging materials. Food Chem 151:343–351

    Article  CAS  Google Scholar 

  154. Shrestha S, Montes F, Schueneman GT et al (2018) Effects of aspect ratio and crystal orientation of cellulose nanocrystals on properties of poly(vinyl alcohol) composite fibers. Composites Sci Technol 167:482–488

    Article  CAS  Google Scholar 

  155. Zhou YM, Fu SY, Zheng LM et al (2012) Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films, eXPRESS Polymer Lett 6:794–804

    Article  CAS  Google Scholar 

  156. De Moura MR, Aouada FA, Avena-Bustillos RJ et al (2009) Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. J Food Eng 92:448–453

    Article  CAS  Google Scholar 

  157. Kerch G (2015) Chitosan films and coatings prevent losses of fresh fruit nutritional quality: a review. Trends Food Sci Technol 46:159–166

    Article  CAS  Google Scholar 

  158. Slavutsky AM, Bertuzzi MA (2014) Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydr Polym 110:53–61

    Article  CAS  Google Scholar 

  159. Viera da Silva ISV, Neto WPF, Silverio HA et al (2017) Mechanical, thermal and barrier properties of pectin/cellulose nanocrystal nanocomposite films and their effect on the storability of strawberries (Fragaria ananassa). Polym Advan Technol 28:1005–1012

    Article  CAS  Google Scholar 

  160. Wang HX, Qan J, Ding FY (2018) Emerging chitosan-based films for food packaging applications. J Agric Food Chem 66:395–413

    Article  CAS  Google Scholar 

  161. Angellier H, Molina-Boisseau S, Dole P et al (2006) Thermoplastic starch-waxy maize starch nanocrystals nanocomposites. Biomacromol 7:531–539

    Article  CAS  Google Scholar 

  162. Ma XF, Jian RJ, Chang PR et al (2008) Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromol 9:3314–3320

    Article  CAS  Google Scholar 

  163. Svagan AJ, Hedenqvist MS, Berglund L (2009) Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 69:500–506

    Article  CAS  Google Scholar 

  164. Atef M, Rezaei M, Behrooz R (2015) Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oils. Food Hydrocolloids 45:150–157

    Article  CAS  Google Scholar 

  165. Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng, C 33:1819–1841

    Article  CAS  Google Scholar 

  166. Liu K, Lin X, Chen L et al (2014) Dual-functional chitosan-methylisothiazolinone/microfibrillated cellulose biocomposites for enhancing antibacterial and mechanical properties of agar films. Cellulose 21:519–528

    Article  CAS  Google Scholar 

  167. Liu K, Lin X, Chen L et al (2013) Preparation of microfibrillated cellulose/chitosan-benzalkonium chloride biocomposite for enhancing antibacterium and strength of sodium alginate films. J Agric Food Chem 61:6562–6567

    Article  CAS  Google Scholar 

  168. Kristo E, Biliaderis CG (2007) Physical properties of starch nanocrystal reinforced pullulan films. Carbohydr Polym 68:146–158

    Article  CAS  Google Scholar 

  169. LeCorre D, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromol 11:1139–1153

    Article  CAS  Google Scholar 

  170. Walsh NP, Blannin AK, Clark AM et al (1999) The effects of high-intensity intermittent exercise on saliva IgA, total protein and alpha-amylase. J Sports Sci 17:129–134

    Article  CAS  Google Scholar 

  171. Herrera MP, Vasanthan T, Hoover R (2016) Characterization of maize starch nanoparticles prepared by acid hydrolysis. Cereal Chem 93:323–330

    Article  CAS  Google Scholar 

  172. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  173. Lu Y, Weng L, Zhang L (2004) Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromol 5:1046–1051

    Article  CAS  Google Scholar 

  174. Revol JF, Marchessault RH (1993) In-vitro chiral nematic ordering of chitin crystallites. Int J Biol Macromol 15:329–335

    Article  CAS  Google Scholar 

  175. Nair KG, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites 1 processing and swelling behavior. Biomacromol 4:657–665

    Article  CAS  Google Scholar 

  176. van den Broek LAM, Knoop RJI, Kappen FHJ et al (2015) Chitosan films and blends for packaging material. Carbohydr Polym 116:237–242

    Article  CAS  Google Scholar 

  177. Lorevice MV, Otoni CG, de Moura MR et al (2016) Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films. Food Hydrocolloids 52:732–740

    Article  CAS  Google Scholar 

  178. Hubbe MA, Tayeb P, Joyce M et al (2017) Rheology of nanocellulose-rich aqueous suspensions: a Review. BioResources 12:9556–9661

    CAS  Google Scholar 

  179. Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromol 3:609–617

    Article  CAS  Google Scholar 

  180. Samir MASA, Alloin F, Gorecki W et al (2004) Nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose nanocrystals. J Phys Chem B 108:10845–10852

    Article  CAS  Google Scholar 

  181. Chinga-Carrasco G, Syverud K (2010) Computer-assisted quantification of the multi-scale structure of films made of nanofibrillated cellulose. J Nanoparticle Res 12:841–851

    Article  CAS  Google Scholar 

  182. Bideau B, Bras J, Adoui N et al (2017) Polypyrrole/ nanocellulose composite for food preservation: barrier and antioxidant characterization. Food Packag Shelf Life 12:1–8

    Article  Google Scholar 

  183. Dai L, Long Z, Chen J et al (2017) Robust guar gum/cellulose nanofibrils multilayer films with good barrier properties. ACS Appl Mater Interfaces 9:5477–5485

    Article  CAS  Google Scholar 

  184. Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106

    Article  CAS  Google Scholar 

  185. Olsson RT, Fogelström L, Martínez-Sanz M et al (2011) Cellulose nanofillers for food packaging. In: Jagarón JM (ed) Multifuctional and nanoreinforced polymers for food packaging. Woodhead Publ Ltd., Elsevier BV, Amsterdam, pp 86–107

    Chapter  Google Scholar 

  186. Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766

    Article  CAS  Google Scholar 

  187. Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779

    CAS  Google Scholar 

  188. Hubbe MA, Rojas OJ, Lucia LA (2015) Green modification of surface characteristics of cellulosic materials at the molecular or nano scale: a review. BioResources 10:6095–6229

    CAS  Google Scholar 

  189. Follain N, Belbekhouche S, Bras J et al (2018) Tunable gas barrier properties of filled-PCL film by forming percolating cellulose network. Colloids Surf. A - Physicochem Eng Aspects 545:26–30

    Article  CAS  Google Scholar 

  190. Kalia S, Dufresne A, Cherian BM et al (2011) Cellulose-based bio- and nanocomposites: a review. Intl J Polym Sci 2011, article no 837875

    Google Scholar 

  191. Tome LC, Brandao L, Mendes AM et al (2010) Preparation and characterization of bacterial cellulose membranes with tailored surface and barrier properties. Cellulose 17:1203–1211

    Article  CAS  Google Scholar 

  192. Wiles JL, Vergano PJ, Barron FH et al (2000) Water vapor transmission rates and sorption behavior of chitosan films. J Food Sci 65:1175–1179

    Article  CAS  Google Scholar 

  193. Salleh E, Muhamad II, Khairuddin N (2009) Structural characterization and physical properties of antimicrobial (AM) starch-based films. World Acad Sci Eng Technol 55:432–440

    Google Scholar 

  194. Stevanic JS, Bergström EM, Gatenholm P et al (2012) Arabinoxylan/nanofibrillated cellulose composite films. J Mater Sci 47:6724–6732

    Article  CAS  Google Scholar 

  195. Österberg M, Vartiainen J, Lucenius J et al (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5:4640–4647

    Article  CAS  Google Scholar 

  196. Aulin C, Karabulut E, Tran A et al (2013) Transparent nanocellulose multilayer thin films on polylacktic acid with tunable gas barrier properties. ACS Appl Mater Interfaces 5:7352–7359

    Article  CAS  Google Scholar 

  197. Trifol J, Plackett D, Sillard C et al (2016) A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for high-performance polylactide nanocomposites. J Appl Polym Sci 133: article no 43257

    Google Scholar 

  198. Liu YX, Sun B, Wang ZL et al (2016) Mechanical and water vapor barrier properties of bagasse hemicellulose-based films. BioResources 11:4226–4236

    CAS  Google Scholar 

  199. Tyagi P, Lucia LA, Hubbe MA et al (2019) Nanocellulose-based multilayer barrier coatings for gas, oil, and grease resistance. Carbohydr Polym 206:281–288

    Article  CAS  Google Scholar 

  200. Zhang. R, Wang X, Cheng M (2018) Preparation and characterization of potato starch film with various size of nano-SiO2, Polymers 10: article no 1172

    Google Scholar 

  201. Amini E, Azadfallah M, Layeghi M et al (2016) Silver-nanoparticle-impregnated cellulose nanofiber coating for packaging paper. Cellulose 23:557–570

    Article  CAS  Google Scholar 

  202. Bedane AH, Eić M, Farmahini-Farahani M et al (2015) Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films. J Membrane Sci 493:46–57

    Article  CAS  Google Scholar 

  203. Spence KL, Venditti RA, Rojas OJ et al (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848

    Article  CAS  Google Scholar 

  204. Minelli M, Baschetti MG, Doghieri F et al (2010) Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J Membrane Sci 358:67–75

    Article  CAS  Google Scholar 

  205. Wang JW, Gardner DJ, Stark NM et al (2018) Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustain Chem Eng 6:49–70

    Article  CAS  Google Scholar 

  206. Aiba S, Ohashi M, Huang SY (1968) Rapid determination of oxygen permeability of polymer membranes. Indust Eng Chem Fund I7:497–502

    Article  Google Scholar 

  207. Rodionova G, Roudot S, Eriksen Ø et al (2012) The formation and characterization of sustainable layered films incorporating microfibrillated cellulose (MFC). BioResources 7:3690–3700

    CAS  Google Scholar 

  208. Villani C, Loser R, West MJ et al (2014) An inter lab comparison of gas transport testing procedures: oxygen permeability and oxygen diffusivity. Cement Concrete Composites 53:357–366

    Article  CAS  Google Scholar 

  209. Dai L, Wang B, Long Z et al (2015) Properties of hydroxypropyl guar/TEMPO-oxidized cellulose nanofibrils composite films. Cellulose 22:3117–3126

    Article  CAS  Google Scholar 

  210. Kisonen V, Prakobna K, Xu CL et al (2015) Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging. J Mater Sci 50:3189–3199

    Article  CAS  Google Scholar 

  211. Naderi A, Lindström T, Weise CF et al (2016) Phosphorylated nanofibrillated cellulose: production and properties. Nordic Pulp Paper Res J 31:20–29

    Article  CAS  Google Scholar 

  212. Tyagi P, Hubbe MA, Lucia L et al (2018) High performance nanocellulose-based composite coatings for oil and grease resistance. Cellulose 25:3377–3391

    Article  CAS  Google Scholar 

  213. Gajdoš J, Galić K, Kurtanjek Ž et al (2001) Gas permeability and DSC characteristics of polymers used in food packaging. Polym Testing 20(1):49–57

    Article  Google Scholar 

  214. Siracusa V, Blanco I, Romani S et al (2012) Poly(lactic acid)-modified films for food packaging application: physical, mechanical, and barrier behavior. J Appl Polym Sci 125:E390–E401

    Article  CAS  Google Scholar 

  215. Kofinas P, Cohen RE, Halasa AF (1994) Gas-permeability of polyethylene poly(ethylene propylene) semicrystalline diblock copolymers. Polymer 35:1229–1235

    Article  CAS  Google Scholar 

  216. Kumar V, Elfving A, Koivula H et al (2016) Roll-to-roll processed cellulose nanofiber coatings. Ind Eng Chem Res 55:3603–3613

    Article  CAS  Google Scholar 

  217. Aulin C, Gallstedt M, Lindstrom T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574

    Article  CAS  Google Scholar 

  218. Lagaron JM, Catala R, Gavara R (2004) Structural characteristics defining high barrier properties in polymeric materials. Mater Sci Technol 20:1–7

    Article  CAS  Google Scholar 

  219. McKee JR, Huokuna J, Martikainen L et al (2014) Molecular engineering of fracture energy dissipating sacrificial bonds into cellulose nanocrystal nanocomposites. Angew Chem Intl Ed 53:5049–5053

    Google Scholar 

  220. Wolf C, Angellier-Coussy H, Gontard N et al (2018) How the shape of fillers affects the barrier properties of polymer/non-porous particles nanocomposites: a review. J Membrane Sci 556:393–418

    Article  CAS  Google Scholar 

  221. Malhotra B, Keshwani A, Kharkwal H (2015) Antimicrobial food packaging: potential and pitfalls. Frontiers Microbiol 6: article no UNSP 611

    Google Scholar 

  222. Khaneghah AM, Hashemi SMB, Limbo S (2018) Antimicrobial agents and packaging systems in antimicrobial active food packaging: an overview of approaches and interactions. Food Bioprod Proc 111:1–19

    Article  CAS  Google Scholar 

  223. Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry: review. Food Sci Technol 43:837–842

    CAS  Google Scholar 

  224. Cazon P, Velazquez G, Ramirez JA et al (2017) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocolloids 68:136–148

    Article  CAS  Google Scholar 

  225. Rhim JW, Hong SI, Park HM et al (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822

    Article  CAS  Google Scholar 

  226. Velasquez-Cock J, Ramirez E, Betancourt S et al (2014) Influence of the acid type in the production of chitosan films reinforced with bacterial nanocellulose. Int J Biol Macromol 69:208–213

    Article  CAS  Google Scholar 

  227. Raafat D, Sahl HG (2009) Chitosan and its antimicrobial potential—a critical literature survey. Microbial Biotech 2:186–201

    Article  CAS  Google Scholar 

  228. Rhim JW, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutrition 47:411–433

    Article  CAS  Google Scholar 

  229. Herrera MA, Mathew AP, Oksman K (2017) Barrier and mechanical properties of plasticized and cross-linked nanocellulose coatings for paper packaging applications. Cellulose 24:3969–3980

    Article  CAS  Google Scholar 

  230. Giannakas A, Grigoriadi K, Leontiou A et al (2014) Preparation, characterization, mechanical and barrier properties investigation of chitosan-clay nanocomposites. Carbohydr Polym 108:103–111

    Article  CAS  Google Scholar 

  231. Abdollahi M, Rezai M, Farzi G (2012) A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J Food Eng 111:343–350

    Article  CAS  Google Scholar 

  232. Muller CMO, Laurindo JB, Yamashita F (2011) Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Indust Crops Prod 33:605–610

    Article  CAS  Google Scholar 

  233. Abdorreza MN, Abd Karim A (2013) Mechanical, barrier, physicochemical, and heat seal properties of starch films filled with nanoparticles. J Nano Res 25:90–100

    Article  CAS  Google Scholar 

  234. Bardet R, Reverdy C, Belgacem N et al (2015) Substitution of nanoclay in high gas barrier films of cellulose nanofibrils with cellulose nanocrystals and thermal treatment. Cellulose 22:1227–1241

    Article  CAS  Google Scholar 

  235. Gamelas JAF, Ferraz E (2015) Composite films based on nanocellulose and nanoclay minerals as high strength materials with gas barrier capabilities: key points and challenges. BioResources 10:6310–6313

    Article  CAS  Google Scholar 

  236. Mohan TP, Devchand K, Kanny K (2017) Barrier and biodegradable properties of corn starch-derived biopolymer film filled with nanoclay fillers. J Plastic Film Sheeting 33(3):309–336

    Article  CAS  Google Scholar 

  237. Rhim JW (2011) Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydr Polym 86:291–699

    Article  CAS  Google Scholar 

  238. Saurabh CK, Gupta S, Bahadur J et al (2015) Mechanical and barrier properties of guar gum based nano-composite films. Carbohydr Polym 124:77–84

    Article  CAS  Google Scholar 

  239. Wolf JR, Strieder W (1990) Surface and void tortuosities for a random fiber bed - Overlapping, parallel cylinders of several radii. J Membrane Sci 49:103–115

    Article  CAS  Google Scholar 

  240. Zalc JM, Reyes SC, Iglesia E (2004) The effects of diffusion mechanism and void structure on transport rates and tortuosity factors in complex porous structures. Chem Eng Sci 59:2947–2960

    Article  CAS  Google Scholar 

  241. Hubbe MA (2017) Hybrid filler (cellulose/noncellulose) reinforced nanocomposites. In: Kargarzadeh H, Ahmad I, Thomas S, Dufresne A (eds) Handbook of nanocellulose and cellulose nanocomposites. Vol 1, Wiley, pp 273–299. (Ch 8)

    Google Scholar 

  242. Liu AD, Walther A, Ikkala O et al (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromol 12:633–641

    Article  CAS  Google Scholar 

  243. Mirmehdi S, Hein PRG, Sarantopoulos CIGD et al (2018) Cellulose nanofibrils/nanoclay hybrid composite as a paper coating: effects of spray time, nanoclay content and corona discharge on barrier and mechanical properties of the coated papers. Food Packag Shelf Life 15:87–94

    Article  Google Scholar 

  244. Wang YX, Cao XD, Zhang LN (2006) Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromol Biosci 6:524–531

    Article  CAS  Google Scholar 

  245. Soykeabkaew N, Laosat N, Ngaokla A et al (2012) Reinforcing potential of micro- and nano-sized fibers in the starch-based biocomposites. Composites Sci Technol 72:845–852

    Article  CAS  Google Scholar 

  246. Sharma S, Zhang X, Nair SS et al (2014) Thermally enhanced high performance cellulose nano fibril barrier membranes. RSC Adv 4(85):45136–45142

    Article  CAS  Google Scholar 

  247. Xia JY, Zhang Z, Liu W et al (2018) Highly transparent 100% cellulose nanofibril films with extremely high oxygen barriers in high relative humidity. Cellulose 25:4057–4066

    Article  CAS  Google Scholar 

  248. Ponni R, Vuorinen T, Kontturi E (2012) Proposed nano-scale coalescence of cellulose in chemical pulp fibers during technical treatments. BioResources 7:6077–6108

    Article  Google Scholar 

  249. Yang SJ, Tang YJ, Wang JM et al (2014) Surface treatment of cellulosic paper with starch-based composites reinforced with nanocrystalline cellulose. Indust Eng Chem Res 53:13980–13988

    Article  CAS  Google Scholar 

  250. Kerekes RJ, Schell CJ (1992) Characerization of fiber flocculation regimes by a crowding factor. J Pulp Paper Sci 18:J32–J38

    Google Scholar 

  251. Hubbe MA (2007) Flocculation and redispersion of cellulosic fiber suspensions: a review of effects of hydrodynamic shear and polyelectrolytes. BioResources 2:296–331

    CAS  Google Scholar 

  252. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  253. Capadona JR, Van Den Berg O, Capadona LA et al (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nature Nanotech 1:765–769

    Article  CAS  Google Scholar 

  254. Gontard N, Duchez C, Cuq JL et al (1994) Edible composite films of wheat gluten and lipids—water-vapor permeability and other physical properties. Intl J Food Sci Technol 29:39–50

    Article  CAS  Google Scholar 

  255. Talja RA, Helén H, Roos YH et al (2007) Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydr Polym 67:288–295

    Article  CAS  Google Scholar 

  256. Miranda CS, Ferreira MS, Magalhães MT et al (2015) Mechanical, thermal and barrier properties of starch-based films plasticized with glycerol and lignin and reinforced with cellulose nanocrystals. Mater Today Proc 2:63–69

    Article  Google Scholar 

  257. Arvanitoyannis IS, Nakayama A, Aiba S (1998) Chitosan and gelatin based edible films: state diagrams, mechanical and permeation properties. Carbohydr Polym 37:371–382

    Article  CAS  Google Scholar 

  258. Caner C, Vergano PJ, Wiles JL (1998) Chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage. J Food Sci 63:1049–1053

    Article  CAS  Google Scholar 

  259. Olivas GI, Barbosa-Cánovas GV (2008) Alginate-calcium films: water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT-Food Sci Technol 41:359–366

    Article  CAS  Google Scholar 

  260. Peng XW, Ren JL, Zhong LX et al (2011) Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromol 2011:3321–3329

    Article  CAS  Google Scholar 

  261. Lagarón JM (2011) Multifunctional and nanoreinforced polymers for food packaging. In: Jagarón JM (ed) Multifuctional and nanoreinforced polymers for food packaging. Woodhead Publ Ltd., Elsevier BV, Amsterdam, pp 1–28

    Chapter  Google Scholar 

  262. Lu P, Xiao HN, Pan YF (2015) Improving water vapor barrier of green-based nanocellulose film via hydrophobic coating. In: Chung SL (ed), proceedings of the 2014 international conference on materials science and energy engineering (CMSEE 2014), pp 148–153

    Google Scholar 

  263. Jiang G, Zhang MD, Feng J et al (2017) High oxygen barrier property of poly(propylene carbonate)/polyethylene glycol nanocomposites with low loading of cellulose nanocrystals. ACS Sustain Chem Eng 5:11246–11254

    Article  CAS  Google Scholar 

  264. Rafieian F, Shahedi M, Keramat J et al (2014) Mechanical, thermal and barrier properties of nano-biocomposite based on gluten and carboxylated cellulose nanocrystals. Indust Crops Prod 53:282–288

    Article  CAS  Google Scholar 

  265. Reddy JP, Rhim JW (2014) Characterization of bionanocomposite films prepared with agar and paper- mulberry pulp nanocellulose. Carbohydr Polym 110:480–488

    Article  CAS  Google Scholar 

  266. Rhim JW, Reddy JP, Luo X (2015) Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites film. Cellulose 22:407–420

    Article  CAS  Google Scholar 

  267. Wang WH, Zhang XL, Li C et al (2018) Using carboxylated cellulose nanofibers to enhance mechanical and barrier properties of collagen fiber film by electrostatic interaction. J Sci Food Agric 98:3089–3097

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. Hubbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hubbe, M.A., Tyagi, P., Pal, L. (2019). Nanopolysaccharides in Barrier Composites. In: Lin, N., Tang, J., Dufresne, A., Tam, M. (eds) Advanced Functional Materials from Nanopolysaccharides. Springer Series in Biomaterials Science and Engineering, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-15-0913-1_9

Download citation

Publish with us

Policies and ethics