Skip to main content

The Use of Nano-Polysaccharides in Biomedical Applications

  • Chapter
  • First Online:
Advanced Functional Materials from Nanopolysaccharides

Abstract

Nano-polysaccharides (NPs) are materials that have been used to sustain the ecological systems without us knowing their importance. In recent years, NPs are being exploited in various applications, such as in the treatment of diseases and the delivery of therapeutics, offering solutions that impact society. Nanocellulose, chitin/chitosan, and starch nanoparticles possess attractive properties for biomedical applications as they are biocompatible, biodegradable, negligible cytotoxicity, abundant surface functional groups that can be utilized for further chemical modifications. This chapter discusses the synthesis, characterization and applications of nano-polysaccharides in medical related applications, such as controlled drug release and gene delivery, bioimaging, biosensor, biocatalyst, antibacterial, and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30:592–599

    Article  CAS  Google Scholar 

  2. Debele TA, Mekuria SL, Tsai HC (2016) Polysaccharide based nanogels in the drug delivery system: application as the carrier of pharmaceutical agents. Mater Sci Eng C 68:964–981

    Article  CAS  Google Scholar 

  3. Goldberg M, Langer R, Jia X (2007) Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 18:241–268

    Article  CAS  Google Scholar 

  4. Wilczewska AZ, Niemirowicz K, Markiewicz KH et al (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64:1020–1037

    Article  CAS  Google Scholar 

  5. Swierczewska M, Han HS, Kim K et al (2016) Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv Drug Deliv Rev 99:70–84

    Article  CAS  Google Scholar 

  6. García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438

    Article  CAS  Google Scholar 

  7. Mehling T, Smirnova I, Guenther U et al (2009) Polysaccharide-based aerogels as drug carriers. J Non Cryst Solids 355:2472–2479

    Article  CAS  Google Scholar 

  8. Liu Z, Jiao Y, Wang Y et al (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60:1650–1662

    Article  CAS  Google Scholar 

  9. Arora D, Rawal RK, Shankar R et al (2016) Polysaccharides based nanomaterials for targeted anti-cancer drug delivery. J Drug Target 25:1–16

    Google Scholar 

  10. Saravanakumar G, Jo D-G, Park JH (2012) Polysaccharide-based nanoparticles: a versatile platform for drug delivery and biomedical imaging. Curr Med Chem 19:3212

    Article  CAS  Google Scholar 

  11. Zhang N, Wardwell PR, Bader RA (2013) Polysaccharide-based micelles for drug delivery. Pharmaceutics 5:329–352

    Article  CAS  Google Scholar 

  12. Hu B, Huang Q (2013) Biopolymer based nano-delivery systems for enhancing bioavailability of nutraceuticals. Chin J Polym Sci 31:1190

    Article  CAS  Google Scholar 

  13. Nitta SK, Numata K (2013) Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 14(1):1629–1654

    Article  CAS  Google Scholar 

  14. Peng B, Tang J, Wang P et al (2018) Rheological properties of cellulose nanocrystal-polymeric systems. Cellulose 25:3229–3240

    Article  CAS  Google Scholar 

  15. Islam MS, Chen L, Sisler J et al (2018) Cellulose nanocrystal (CNC)–inorganic hybrid systems: synthesis, properties and applications. J Mater Chem B 6:864–883

    Article  CAS  Google Scholar 

  16. Mohammed N, Grishkewich N, Tam KC (2018) Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ Sci Nano 5:623–658

    Article  CAS  Google Scholar 

  17. Song Y, Zhang L, Gan W et al (2011) Self-assembled micelles based on hydrophobically modified quaternized cellulose for drug delivery. Colloids Surf B Biointerfaces 83:313–320

    Article  CAS  Google Scholar 

  18. Tang J, Sisler J, Grishkewich N et al (2017) Functionalization of cellulose nanocrystals for advanced applications. J Colloid Interface Sci 494:397–409

    Article  CAS  Google Scholar 

  19. Grishkewich N, Mohammed N, Tang J et al (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45

    Article  CAS  Google Scholar 

  20. Shukla RK, Tiwari A (2012) Carbohydrate polymers: applications and recent advances in delivering drugs to the colon. Carbohydr Polym 88:399–416

    Article  CAS  Google Scholar 

  21. Luong JHT, Lam E, Leung ACW et al (2012) Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol 30:283–290

    Article  CAS  Google Scholar 

  22. Li Z, Xu W, Zhang C et al (2015) Self-assembled lysozyme/carboxymethylcellulose nanogels for delivery of methotrexate. Int J Biol Macromol 75:166–172

    Article  CAS  Google Scholar 

  23. Tan J, Kang H, Liu R et al (2011) Dual-stimuli sensitive nanogels fabricated by self-association of thiolated hydroxypropyl cellulose. Polym Chem 2:672–678

    Article  CAS  Google Scholar 

  24. Hu B, Ting Y, Zeng X et al (2012) Cellular uptake and cytotoxicity of chitosan–caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate. Carbohydr Polym 89:362–370

    Article  CAS  Google Scholar 

  25. Ghimire A, Kasi RM, Kumar CV (2014) Proton-coupled protein binding: controlling lysozyme/poly(acrylic acid) interactions with pH. J Phys Chem B 118:5026–5033

    Article  CAS  Google Scholar 

  26. Li Z, Xu W, Xiong W et al (2015) Curcumin encapsulated in the complex of lysozyme/carboxymethylcellulose and implications for the antioxidant activity of curcumin. Food Res Int 75:98–105

    Article  CAS  Google Scholar 

  27. Deng H, Li B, Peng Z et al (2012) Nanogels fabricated by lysozyme and sodium carboxymethyl cellulose for 5-fluorouracil controlled release. Int J Pharm 441:721–727

    Google Scholar 

  28. Qian H, Wang X, Yuan K et al (2014) Delivery of doxorubicin in vitro and in vivo using bio-reductive cellulose nanogels. Biomater Sci 2:220–232

    Article  CAS  Google Scholar 

  29. Rahimian K, Wen Y, Oh JK (2015) Redox-responsive cellulose-based thermoresponsive grafted copolymers and in-situ disulfide crosslinked nanogels. Polymer 72:387–394

    Article  CAS  Google Scholar 

  30. Wen Y, Oh JK (2015) Intracellular delivery cellulose-based bionanogels with dual temperature/pH-response for cancer therapy. Colloids Surf B Biointerfaces 133:246–253

    Article  CAS  Google Scholar 

  31. Wang H, He J, Zhang M et al (2015) A new pathway towards polymer modified cellulose nanocrystals via a “grafting onto” process for drug delivery. Polym Chem 6:4206–4209

    Article  CAS  Google Scholar 

  32. You J, Cao J, Zhao Y et al (2016) Improved mechanical properties and sustained release behavior of cationic cellulose nanocrystals reinforced cationic cellulose injectable hydrogels. Biomacromolecules 17:2839–2848

    Article  CAS  Google Scholar 

  33. Lin N, Gèze A, Wouessidjewe D et al (2016) Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs codelivery. ACS Appl Mater Interfaces 8:6880–6889

    Article  CAS  Google Scholar 

  34. Dong S, Cho HJ, Lee YW et al (2014) Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules 15:1560–1567

    Article  CAS  Google Scholar 

  35. Ikkala O, Kontturi E, Rosilo H et al (2014) Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding. Nanoscale 6:11871–11881

    Article  CAS  Google Scholar 

  36. Cihova M, Altanerova V, Altaner C (2011) Stem cell based cancer gene therapy. Mol Pharm 8:1480–1487

    Article  CAS  Google Scholar 

  37. Hu H, Yuan W, Liu FS et al (2015) Redox-responsive polycation-functionalized cotton cellulose nanocrystals for effective cancer treatment. ACS Appl Mater Interfaces 7:8942–8951

    Article  CAS  Google Scholar 

  38. Hu H, Hou XJ, Wang XC et al (2016) Gold nanoparticle-conjugated heterogeneous polymer brush-wrapped cellulose nanocrystals prepared by combining different controllable polymerization techniques for theranostic applications. Polym Chem 7:3107–3116

    Article  CAS  Google Scholar 

  39. Son Y,  Jang JS,  Cho YW et al (2003) Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J Control Release 91 (1-2):135-145

    Article  CAS  Google Scholar 

  40. Prabaharan M (2015) Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol 72:1313–1322

    Article  CAS  Google Scholar 

  41. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28

    Article  CAS  Google Scholar 

  42. Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367

    Article  CAS  Google Scholar 

  43. Shanmuganathan R, Edison TNJI, LewisOscar F et al (2019) Chitosan nanopolymers: an overview of drug delivery against cancer. Int J Biol Macromol 130:727–736

    Article  CAS  Google Scholar 

  44. Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11

    Article  CAS  Google Scholar 

  45. Yu S, Xu X, Feng J et al (2019) Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int J Pharm 560:282–293

    Article  CAS  Google Scholar 

  46. Bernkop-Schnürch A, Dünnhaupt S (2012) Chitosan-based drug delivery systems. Eur J Pharm Biopharm 81:463–469

    Article  CAS  Google Scholar 

  47. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99

    Article  CAS  Google Scholar 

  48. Kumar MNVR, Muzzarelli RAA, Muzzarelli C et al (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084

    Article  Google Scholar 

  49. Anitha A, Sowmya S, Kumar PTS et al (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667

    Article  CAS  Google Scholar 

  50. Van der Lubben IM, Verhoef JC, Borchard G et al (2001) Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci 14:201–207

    Article  Google Scholar 

  51. Hejazi R, Amiji M (2003) Chitosan-based gastrointestinal delivery systems. J Control Release 89:151–165

    Article  CAS  Google Scholar 

  52. Jayakumar R, Prabaharan M, Sudheesh Kumar PT et al (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337

    Article  CAS  Google Scholar 

  53. Du J, Dai J, Liu JL et al (2006) Novel pH-sensitive polyelectrolyte carboxymethyl Konjac glucomannan-chitosan beads as drug carriers. React Funct Polym 66:1055–1061

    Article  CAS  Google Scholar 

  54. Il’ina AV, Varlamov VP (2005) Chitosan-based polyelectrolyte complexes: a review. Appl Biochem Microbiol 41:5–11

    Article  Google Scholar 

  55. Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63:131–135

    Article  CAS  Google Scholar 

  56. Brigger I, Dubernet C, Couvreur P (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36

    Article  Google Scholar 

  57. Yu M, Lee I-H, Kim H et al (2008) Conjugated chitosan as a novel platform for oral delivery of paclitaxel. J Med Chem 51:6442–6449

    Article  CAS  Google Scholar 

  58. Lee E, Lee J, Jon S (2010) A novel approach to oral delivery of insulin by conjugating with low molecular weight chitosan. Bioconjug Chem 21:1720–1723

    Article  CAS  Google Scholar 

  59. Xiong F-L, Gu X-B, Zheng H et al (2012) Preparation, characterization and in vitro release study of a glutathione-dependent polymeric prodrug Cis-3-(9H-purin-6-ylthio)-acrylic acid-graft-carboxymethyl chitosan. Int J Pharm 436:240–247

    Article  CAS  Google Scholar 

  60. Yang L, Chen L, Zeng R et al (2010) Synthesis, nanosizing and in vitro drug release of a novel anti-HIV polymeric prodrug: chitosan-O-isopropyl-5′-O-d4T monophosphate conjugate. Bioorg Med Chem 18:117–123

    Article  CAS  Google Scholar 

  61. Yang L, Zeng R, Li C et al (2009) Novel synthesis and in vitro drug release of polymeric prodrug: chitosan-O-isopropyl-5′-O-d4T monophosphate conjugate. Bioorg Med Chem Lett 19:2566–2569

    Article  CAS  Google Scholar 

  62. Sah AK, Dewangan M, Suresh PK (2019) Potential of chitosan-based carrier for periodontal drug delivery. Colloids Surf B Biointerfaces 178:185–198

    Article  CAS  Google Scholar 

  63. Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 4743–4768

    Article  CAS  Google Scholar 

  64. Ghoshal A, Goswami U, Raza A et al (2016) Recombinant sFRP4 bound chitosan–alginate composite nanoparticles embedded with silver nanoclusters for Wnt/β-catenin targeting in cancer theranostics. RSC Adv 85763–85772

    Article  CAS  Google Scholar 

  65. Raveendran S, Poulose AC, Yoshida Y et al (2013) Bacterial exopolysaccharide based nanoparticles for sustained drug delivery, cancer chemotherapy and bioimaging. Carbohydr Polym 91:22–32

    Article  CAS  Google Scholar 

  66. Hou X, Zhou H, Wang L et al (2017) Multifunctional near-infrared dye-magnetic nanoparticles for bioimaging and cancer therapy. Cancer Lett 390:168–175

    Article  CAS  Google Scholar 

  67. Chowdhuri AR, Tripathy S, Haldar C (2015) Single step synthesis of carbon dot embedded chitosan nanoparticles for cell imaging and hydrophobic drug delivery. J Mater Chem B 47:9122–9131

    Article  CAS  Google Scholar 

  68. Wang H, Di J, Sun Y et al (2015) Biocompatible PEG-chitosan @ carbon dots hybrid nanogels for two-photon fluorescence imaging, near-infrared light/pH dual-responsive drug carrier, and synergistic therapy. Adv Funct Mater 25:5537–5547

    Article  CAS  Google Scholar 

  69. Tomak A, Bor G, Muhammed U (2017) BODIPY-conjugated chitosan nanoparticles as a fluorescent probe. Drug Chem Toxicol 40:375–382

    Article  CAS  Google Scholar 

  70. Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811

    Article  CAS  Google Scholar 

  71. Mahmoud KA, Mena JA, Male KB et al (2010) Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS Appl Mater 2:2924–2932

    Article  CAS  Google Scholar 

  72. Guo J, Liu D, Filpponen I et al (2017) Photoluminescent hybrids of cellulose nanocrystals and carbon quantum dots as cytocompatible probes for in vitro bioimaging. Biomacromolecules 18:2045–2055

    Article  CAS  Google Scholar 

  73. Abitbol T, Palermo A, Moran-Mirabal JM et al (2013) Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents. Biomacromolecules 14:3278–3284

    Article  CAS  Google Scholar 

  74. Drogat N, Granet R, Le Morvan C et al (2012) Chlorin-PEI-labeled cellulose nanocrystals: synthesis, characterization and potential application in PDT. Bioorg Med Chem Lett 22:3648–3652

    Article  CAS  Google Scholar 

  75. Grate JW, Mo K, Shin Y et al (2015) Alexa fluor-labeled fluorescent cellulose nanocrystals for bioimaging solid cellulose in spatially structured microenvironments. Bioconjug Chem 26:593–601

    Article  CAS  Google Scholar 

  76. Thakur B, Amarnath CA, Sawant SN (2014) Pectin coated polyaniline nanoparticles for an amperometric glucose biosensor. RSC Adv 77:40917–40923

    Article  CAS  Google Scholar 

  77. Elmizadeh H, Soleimani M, Faridbod F et al (2018) Fabrication and optimization of a sensitive tetracycline fluorescent nano-sensor based on oxidized starch polysaccharide biopolymer-capped CdTe/ZnS quantum dots: Box–Behnken design. J Photochem Photobiol A Chem 367:188–199

    Article  CAS  Google Scholar 

  78. Edwards JV, Fontenot KR, Prevost NT et al (2016) Preparation, characterization and activity of a peptide-cellulosic aerogel protease sensor from cotton. Sensors 16:1–19

    Article  CAS  Google Scholar 

  79. Rejinold NS, Chennazhi KP, Tamura H et al (2011) Multifunctional chitin nanogels for simultaneous drug delivery, bioimaging, and biosensing. ACS Appl Mater 3:3654–3665

    Article  CAS  Google Scholar 

  80. Anusha JR, Raj CJ, Cho B et al (2015) Amperometric glucose biosensor based on glucose oxidase immobilized over chitosan nanoparticles from gladius of Uroteuthis duvaucelii. Sens Actuators B Chem 215:536–543

    Article  CAS  Google Scholar 

  81. Singh A, Sinsinbar G, Choudhary M et al (2013) Chemical graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sens Actuators B Chem 185:675–684

    Article  CAS  Google Scholar 

  82. Liu S, Kang M, Yan F et al (2015) Electrochemical DNA biosensor based on microspheres of cuprous oxide and nano-chitosan for Hg(II) detection. Electrochim Acta 160:64–73

    Article  CAS  Google Scholar 

  83. Li G, Xue Q, Feng J et al (2015) Electrochemical biosensor based on nanocomposites film of thiol graphene-thiol chitosan/nano gold for the detection of carcinoembryonic antigen. Electroanalysis 27:1245–1252

    Article  CAS  Google Scholar 

  84. Nielsen LJ, Eyley S, Thielemans W et al (2010) Dual fluorescent labelling of cellulose nanocrystals for pH sensing. Chem Commun 46:8929–8931

    Article  CAS  Google Scholar 

  85. Chen L, Cao W, Grishkewich N et al (2015) Synthesis and characterization of pH-responsive and fluorescent poly (amidoamine) dendrimer-grafted cellulose nanocrystals. J Colloid Interface Sci 450:101–108

    Article  CAS  Google Scholar 

  86. Dong L, Zhang X, Ren S et al (2016) Poly(diallyldimethylammonium chloride)–cellulose nanocrystals supported Au nanoparticles for nonenzymatic glucose sensing. RSC Adv 6:6436–6442

    Article  CAS  Google Scholar 

  87. Zhang L, Li Q, Zhou J et al (2012) Synthesis and photophysical behavior of pyrene-bearing cellulose nanocrystals for Fe3+ sensing. Macromol Chem Phys 213:1612–1617

    Article  CAS  Google Scholar 

  88. Mehdi S, Min S, Sayed M et al (2019) Lipase-immobilized chitosan-crosslinked magnetic nanoparticle as a biocatalyst for ring opening esterification of itaconic anhydride. Biochem Eng J 143:141–150

    Article  CAS  Google Scholar 

  89. Myra F, Manan A, Attan N et al (2018) Insight into the Rhizomucor miehei lipase supported on chitosan-chitin nanowhiskers assisted esterification of eugenol to eugenyl benzoate. J Biotechnol 280:19–30

    Article  CAS  Google Scholar 

  90. Dhavale RP, Parit SB, Sahoo SC et al (2018) α-amylase immobilized on magnetic nanoparticles: reusable robust nano-biocatalyst for starch hydrolysis

    Google Scholar 

  91. Kim M, Cheol S, Sung J et al (2018) Anti-proliferative applications of laccase immobilized on super-magnetic chitosan-functionalized halloysite nanotubes. Int J Biol Macromol 118:228–237

    Article  CAS  Google Scholar 

  92. Chandren S, Attan N, Mahat NA et al (2017) Structure and properties of oil palm-based nanocellulose reinforced chitosan nanocomposite for efficient synthesis of butyl butyrate. Carbohydr Polym 176:281–292

    Article  CAS  Google Scholar 

  93. Asmat S, Husain Q (2018) Exquisite stability and catalytic performance of immobilized lipase on novel fabricated nanocellulose fused polypyrrole/graphene oxide nanocomposite: characterization and application. Int J Biol Macromol 117:331–341

    Article  CAS  Google Scholar 

  94. Rad-Moghadam K, Dehghan N (2014) Application of cellulose/chitosan grafted nano-magnetites as efficient and recyclable catalysts for selective synthesis of 3-indolylindolin-2-ones. J Mol Catal A Chem 392:97–104

    Article  CAS  Google Scholar 

  95. Yuan B, Yang XQ, Xue LW et al (2016) A novel recycling system for nano-magnetic molecular imprinting immobilised cellulases: synergistic recovery of anthocyanin from fruit and vegetable waste. Bioresour Technol 222:14–23

    Article  CAS  Google Scholar 

  96. Koutinas AA, Sypsas V, Kandylis P et al (2012) Nano-tubular cellulose for bioprocess technology development. PLoS ONE 7:e34350

    Article  CAS  Google Scholar 

  97. Kumar MN, Gialleli A, Bekatorou A et al (2016) Application of nano/micro-tubular cellulose of Indian origin for alcoholic fermentation and cold pasteurization of contaminated water. LWT Food Sci Technol 69:273–279

    Article  CAS  Google Scholar 

  98. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  99. Ates B, Cerkez I (2017) Dual antibacterial functional regenerated cellulose fibers. J Appl Polym Sci 134:1–8

    Article  CAS  Google Scholar 

  100. Klevens RM et al (2007) Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep 122:160–166

    Article  Google Scholar 

  101. Hu Z, Gänzle MG (2018) Challenges and opportunities related to the use of chitosan as a food preservative. J Appl Microbiol 307:1–14

    Google Scholar 

  102. Chao D, Xin M, Jingru M et al (2019) Chitosan as a preservative for fruits and vegetables: a review on chemistry and antimicrobial properties. J Bioresour Bioprod 4:11–21

    Google Scholar 

  103. Raafat D, Sahl H-G (2009) Chitosan and its antimicrobial potential—a critical literature survey. Microb Biotechnol 2:186–201

    Article  CAS  Google Scholar 

  104. Kong M, Chen XG, Xing K et al (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    Article  CAS  Google Scholar 

  105. Rabea EI, Badawy MET, Stevens CV et al (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465

    Article  CAS  Google Scholar 

  106. Je J-Y, Kim S-K (2006) Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. J Agric Food Chem 54:6629–6633

    Article  CAS  Google Scholar 

  107. Tao Y, Qian LH, Xie J (2011) Effect of chitosan on membrane permeability and cell morphology of Pseudomonas aeruginosa and Staphylococcus aureus. Carbohydr Polym 86:969–974

    Article  CAS  Google Scholar 

  108. Helander IM, Nurmiaho-Lassila EL, Ahvenainen R et al (2001) Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int J Food Microbiol 71:235–244

    Article  CAS  Google Scholar 

  109. Liu H, Du Y, Wang X et al (2004) Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol 95:147–155

    Article  CAS  Google Scholar 

  110. Raafat D, Von Bargen K, Haas A et al (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 74:3764–3773

    Article  CAS  Google Scholar 

  111. Shahid-Ul-Islam, Butola BS (2019) Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. Int J Biol Macromol 121:905–912

    Article  CAS  Google Scholar 

  112. Shahid-Ul-Islam, Shahid M, Mohammad F (2013) Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers—a review. Ind Eng Chem Res 52:5245–5260

    Article  CAS  Google Scholar 

  113. Li P, Kwong TL, Lee DKL et al (2005) Novel core-shell particles with poly(n-butyl acrylate) cores and chitosan shells as an antibacterial coating for textiles. Polymer 46:10538–10543

    Article  CAS  Google Scholar 

  114. Jung K-H, Huh M-W, Meng W et al (2007) Preparation and antibacterial activity of PET/chitosan nanofibrous mats using an electrospinning technique. J Appl Polym Sci 105:2816–2823

    Article  CAS  Google Scholar 

  115. Ivanova NA, Philipchenko AB (2012) Superhydrophobic chitosan-based coatings for textile processing. Appl Surf Sci 263:783–787

    Article  CAS  Google Scholar 

  116. Joshi M, Khanna R, Shekhar R et al (2011) Chitosan nanocoating on cotton textile substrate using layer-by-layer self-assembly technique. J Appl Polym Sci 119:2793–2799

    Article  CAS  Google Scholar 

  117. Liu J, Liu C, Liu Y et al (2013) Study on the grafting of chitosan-gelatin microcapsules onto cotton fabrics and its antibacterial effect. Colloids Surf B Biointerfaces 109:103–108

    Article  CAS  Google Scholar 

  118. Alonso D, Gimeno M, Sepúlveda-Sánchez JD et al (2010) Chitosan-based microcapsules containing grapefruit seed extract grafted onto cellulose fibers by a non-toxic procedure. Carbohydr Res 345:854–859

    Article  CAS  Google Scholar 

  119. Abdel-Mohsen AM, Aly AS, Hrdina R et al (2012) Biomedical textiles through multifunctionalization of cotton fabrics using innovative methoxypolyethylene glycol-n-chitosan graft copolymer. J Polym Environ 20:104–116

    Article  CAS  Google Scholar 

  120. Janjic S, Kostic M, Vucinic V et al (2009) Biologically active fibers based on chitosan-coated lyocell fibers. Carbohydr Polym 78:240–246

    Article  CAS  Google Scholar 

  121. Sheikh J, Bramhecha I (2018) Multifunctional modification of linen fabric using chitosan-based formulations. Int J Biol Macromol 118:896–902

    Article  CAS  Google Scholar 

  122. Suppakul P, Miltz J, Sonneveld K et al (2003) Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J Food Sci 68:408–420

    Article  CAS  Google Scholar 

  123. Quintavalla S, Vicini L (2002) Antimicrobial food packaging in meat industry. Meat Sci 62:373–380

    Article  CAS  Google Scholar 

  124. Malhotra B, Keshwani A, Kharkwal H (2015) Antimicrobial food packaging: potential and pitfalls. Front Microbiol 6:1–9

    Article  Google Scholar 

  125. Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44:223–237

    Article  CAS  Google Scholar 

  126. Leceta I, Guerrero P, De La Caba K (2013) Functional properties of chitosan-based films. Carbohydr Polym 93:339–346

    Article  CAS  Google Scholar 

  127. Mujtaba M, Morsi RE, Kerch G et al (2019) Current advancements in chitosan-based film production for food technology: a review. Int J Biol Macromol

    Google Scholar 

  128. Van Den Broek LAM, Knoop RJI, Kappen FHJ et al (2015) Chitosan films and blends for packaging material. Carbohydr Polym 116:237–242

    Article  CAS  Google Scholar 

  129. Jianglian D (2013) Application of chitosan based coating in fruit and vegetable preservation: a review. J Food Process Technol 04:5–8

    Article  Google Scholar 

  130. Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng C 33:1819–1841

    Article  CAS  Google Scholar 

  131. Kerch G (2015) Chitosan films and coatings prevent losses of fresh fruit nutritional quality: a review. Trends Food Sci Technol 46:159–166

    Article  CAS  Google Scholar 

  132. Xing Y, Xu Q, Li X et al (2016) Chitosan-based coating with antimicrobial agents: preparation, property, mechanism, and application effectiveness on fruits and vegetables. Int J Polym Sci

    Google Scholar 

  133. Leceta I, Peñalba M, Arana P et al (2015) Ageing of chitosan films: effect of storage time on structure and optical, barrier and mechanical properties. Eur Polym J 66:170–179

    Article  CAS  Google Scholar 

  134. Siripatrawan U, Vitchayakitti W (2016) Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll 61:695–702

    Article  CAS  Google Scholar 

  135. Sun L, Sun J, Chen L et al (2017) Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material. Carbohydr Polym 163:81–91

    Article  CAS  Google Scholar 

  136. Özen İ, Erim FB, Torlak E et al (2017) Antimicrobial and physical properties of chitosan films incorporated with turmeric extract. Int J Biol Macromol 101:882–888

    Article  CAS  Google Scholar 

  137. Azizi S, Ahmad MB, Ibrahim NA et al (2014) Cellulose nanocrystals/ZnO as a bifunctional reinforcing nanocomposite for poly(vinyl alcohol)/chitosan blend films: fabrication, characterization and properties. Int J Mol Sci 15:11040–11053

    Article  CAS  Google Scholar 

  138. Del Nobile MA, Conte A, Attianese I et al (2013) MMT-supported Ag nanoparticles for chitosan nanocomposites: structural properties and antibacterial activity. Carbohydr Polym 102:385–392

    Google Scholar 

  139. Vlacha M, Giannakas A, Katapodis P et al (2016) On the efficiency of oleic acid as plasticizer of chitosan/clay nanocomposites and its role on thermo-mechanical, barrier and antimicrobial properties—comparison with glycerol. Food Hydrocoll 57:10–19

    Article  CAS  Google Scholar 

  140. Zhang L, Wang H, Jin C et al (2017) Sodium lactate loaded chitosan-polyvinyl alcohol/montmorillonite composite film towards active food packaging. Innov Food Sci Emerg Technol 42:101–108

    Article  CAS  Google Scholar 

  141. Moghadas B, Dashtimoghadam E, Mirzadeh H et al (2016) Novel chitosan-based nanobiohybrid membranes for wound dressing applications. RSC Adv 6:7701–7711

    Article  CAS  Google Scholar 

  142. Liu Y, Wang S, Lan W (2018) Fabrication of antibacterial chitosan-PVA blended film using electrospray technique for food packaging applications. Int J Biol Macromol 107:848–854

    Article  CAS  Google Scholar 

  143. Stoica-Guzun A, Parvulescu O, Stroescu M et al (2015) Chitosan-vanillin composites with antimicrobial properties. Food Hydrocoll 48:62–71

    Article  CAS  Google Scholar 

  144. Mohebi E, Shahbazi Y (2017) Application of chitosan and gelatin based active packaging films for peeled shrimp preservation: a novel functional wrapping design. LWT Food Sci Technol 76:108–116

    Article  CAS  Google Scholar 

  145. Devlieghere F, Vermeulen A, Debevere J (2004) Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol 21:703–714

    Article  CAS  Google Scholar 

  146. Chien PJ, Sheu F, Yang FH (2007) Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. J Food Eng 78:225–229

    Article  CAS  Google Scholar 

  147. Sheikhi A, Hayashi J, Eichenbaum J et al (2019) Recent advances in nanoengineering cellulose for cargo delivery. J Control Release 294:53–76

    Article  CAS  Google Scholar 

  148. Li J, Cha R, Mou K et al (2018) Nanocellulose-based antibacterial materials. Adv Healthc Mater 7:1–16

    Article  CAS  Google Scholar 

  149. Sunasee R, Hemraz U (2018) Synthetic strategies for the fabrication of cationic surface-modified cellulose nanocrystals. Fibers 6:15

    Article  CAS  Google Scholar 

  150. Mou K, Li J, Wang Y et al (2017) 2,3-Dialdehyde nanofibrillated cellulose as a potential material for the treatment of MRSA infection. J Mater Chem B 5:7876–7884

    Article  CAS  Google Scholar 

  151. Montanari S, Roumani M, Heux L et al (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671

    Article  CAS  Google Scholar 

  152. Cao X, Ding B, Yu J et al (2013) In situ growth of silver nanoparticles on TEMPO-oxidized jute fibers by microwave heating. Carbohydr Polym 92:571–576

    Article  CAS  Google Scholar 

  153. Tang J, Lee MFX, Zhang W et al (2014) Dual responsive pickering emulsion stabilized by poly[2-(dimethylamino)ethyl methacrylate] grafted cellulose nanocrystals. Biomacromolecules 15:3052–3060

    Article  CAS  Google Scholar 

  154. Morits M, Hynninen V, Nonappa et al (2018) Polymer brush guided templating on well-defined rod-like cellulose nanocrystals. Polym Chem 9:1650–1657

    Article  CAS  Google Scholar 

  155. Yi J, Xu Q, Zhang X et al (2009) Temperature-induced chiral nematic phase changes of suspensions of poly(N, N-dimethylaminoethyl methacrylate)-grafted cellulose nanocrystals. Cellulose 16:989–997

    Article  CAS  Google Scholar 

  156. Grishkewich N, Akhlaghi SP, Zhaoling Y et al (2016) Cellulose nanocrystal-poly(oligo(ethylene glycol) methacrylate) brushes with tunable LCSTs. Carbohydr Polym 144:215–222

    Article  CAS  Google Scholar 

  157. Sunasee R, Burdick JS, Boluk Y et al (2014) Cationic poly(2-aminoethylmethacrylate) and poly(N-(2-aminoethylmethacrylamide)) modified cellulose nanocrystals: synthesis, characterization, and cytotoxicity. Biomacromolecules 16:319–325

    Google Scholar 

  158. Bespalova Y, Kwon D, Vasanthan N (2017) Surface modification and antimicrobial properties of cellulose nanocrystals. J Appl Polym Sci 134:1–7

    Article  CAS  Google Scholar 

  159. Feese E, Sadeghifar H, Gracz HS et al (2011) Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties. Biomacromolecules 12:3528–3539

    Article  CAS  Google Scholar 

  160. Tang J, Song Y, Tanvir S et al (2015) Polyrhodanine coated cellulose nanocrystals: a sustainable antimicrobial agent. ACS Sustain Chem Eng 3:1801–1809

    Article  CAS  Google Scholar 

  161. De Castro DO, Bras J, Gandini A et al (2016) Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process. Carbohydr Polym 137:1–8

    Article  CAS  Google Scholar 

  162. Niu X, Liu Y, Song Y et al (2018) Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid/chitosan composite film for food packaging. Carbohydr Polym 183:102–109

    Article  CAS  Google Scholar 

  163. Zhang D, Karkooti A, Liu L et al (2018) Fabrication of antifouling and antibacterial polyethersulfone (PES)/cellulose nanocrystals (CNC) nanocomposite membranes. J Membr Sci 549:350–356

    Article  CAS  Google Scholar 

  164. Yang W, Fortunati E, Dominici F et al (2016) Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. Eur Polym J 79:1–12

    Article  CAS  Google Scholar 

  165. Fernandes SCM, Sadocco P, Alonso-Varona A et al (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5:3290–3297

    Article  CAS  Google Scholar 

  166. Li R, Jiang Q, Ren X et al (2015) Electrospun non-leaching biocombatible antimicrobial cellulose acetate nanofibrous mats. J Ind Eng Chem 27:315–321

    Article  CAS  Google Scholar 

  167. Hou A, Zhou M, Wang X (2009) Preparation and characterization of durable antibacterial cellulose biomaterials modified with triazine derivatives. Carbohydr Polym 75:328–332

    Article  CAS  Google Scholar 

  168. Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18:622–637

    Article  CAS  Google Scholar 

  169. Foresti ML, Vázquez A, Boury B (2017) Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances. Carbohydr Polym 157:447–467

    Article  CAS  Google Scholar 

  170. Bethke K, Palantöken S, Andrei V et al (2018) Functionalized cellulose for water purification, antimicrobial applications, and sensors. Adv Funct Mater 28:1–14

    Article  CAS  Google Scholar 

  171. Zhao S-W, Guo C-R, Hu Y-Z et al (2018) The preparation and antibacterial activity of cellulose/ZnO composite: a review. Open Chem 16:9–20

    Article  CAS  Google Scholar 

  172. Khan F, Ahmad SR (2013) Polysaccharides and their derivatives for versatile tissue engineering application. Macromol Biosci 13:395–421

    Article  CAS  Google Scholar 

  173. Hao Z, Song Z, Huang J et al (2017) The scaffold microenvironment for stem cell based bone tissue engineering. Biomater Sci 5:1382–1392

    Article  CAS  Google Scholar 

  174. Costa-Pinto AR, Reis RL, Neves NM (2011) Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng Part B Rev 17:331–347

    Article  CAS  Google Scholar 

  175. Li Z, Ramay HR, Hauch KD et al (2005) Chitosan—alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928

    Article  CAS  Google Scholar 

  176. Zhang Y, Reddy J, El-Turki A et al (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29:4314–4322

    Article  CAS  Google Scholar 

  177. Venkatesan J, Qian Z, Ryu B (2011) Preparation and characterization of carbon nanotube-grafted-chitosan—natural hydroxyapatite composite for bone tissue engineering. Carbohydr Polym 83:569–577

    Article  CAS  Google Scholar 

  178. Misra RDK (2009) Biomimetic chitosan—nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197

    Article  CAS  Google Scholar 

  179. Zhang Y, Cheng X, Wang J et al (2006) Novel chitosan/collagen scaffold containing transforming growth factor-β 1 DNA for periodontal tissue engineering. Biochem Biophys Res Commun 344:362–369

    Article  CAS  Google Scholar 

  180. Yilgor P, Tuzlakoglu K, Reis RL et al (2009) Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials 30:3551–3559

    Article  CAS  Google Scholar 

  181. Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132:1–19

    Article  CAS  Google Scholar 

  182. Liuyun J, Yubao L, Chengdong X (2009) Tissue engineering. J Biomed Sci 10:1–10

    Google Scholar 

  183. Pasqui D, Torricelli P, De Cagna M et al (2013) Carboxymethyl cellulose—hydroxyapatite hybrid hydrogel as a composite material for bone tissue engineering applications. J Biomed Mater Res A 102:1568–1579

    Article  CAS  Google Scholar 

  184. Ninan N, Muthiah M, Park I et al (2013) Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohydr Polym 98:877–885

    Article  CAS  Google Scholar 

  185. Sainitya R, Sriram M, Kalyanaraman V et al (2015) Scaffolds containing chitosan/carboxymethyl cellulose/mesoporous wollastonite for bone tissue engineering. Int J Biol Macromol 80:481–488

    Article  CAS  Google Scholar 

  186. Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15:2327–2346

    Article  CAS  Google Scholar 

  187. Zhou C, Shi Q, Guo W et al (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces 5:3847–3854

    Article  CAS  Google Scholar 

  188. Henrik B, Esguerra M, Delbro D et al (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2:320–330

    Article  CAS  Google Scholar 

  189. Zaborowska M, Bodin A, Bäckdahl H et al (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6:2540–2547

    Article  CAS  Google Scholar 

  190. Fang B, Wan Y, Tang T et al (2009) Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng Part A 15:1091–1098

    Article  CAS  Google Scholar 

  191. Huang Y, Wang J, Yang F et al (2017) Modification and evaluation of micro-nano structured porous bacterial cellulose scaffold for bone tissue engineering. Mater Sci Eng C 75:1034–1041

    Article  CAS  Google Scholar 

  192. Gomes ME, Azevedo HS, Moreira AR et al (2008) Starch–poly(ε-caprolactone) and starch–poly(lactic acid) fibre-mesh scaffolds for bone tissue engineering applications: structure, mechanical properties and degradation behaviour. J Tissue Eng Regen Med 2:243–252

    Article  CAS  Google Scholar 

  193. Rodrigues AI, Gomes ME, Leonor IB et al (2012) Bioactive starch-based scaffolds and human adipose stem cells are a good combination for bone tissue engineering. Acta Biomater 8:3765–3776

    Article  CAS  Google Scholar 

  194. Martins A, Chung S, Pedro AJ et al (2009) Hierarchical starch-based fibrous scaffold for bone tissue engineering applications. J Tissue Eng Regen Med 37–42

    Article  CAS  Google Scholar 

  195. Marques AP, Reis RL (2005) Hydroxyapatite reinforcement of different starch-based polymers affects osteoblast-like cells adhesion/spreading and proliferation. Mater Sci Eng C 25:215–229

    Article  CAS  Google Scholar 

  196. Fuchs S, Ghanaati S, Orth C et al (2009) Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds. Biomaterials 30:526–534

    Article  CAS  Google Scholar 

  197. Slgado AJ, Coutinho OP, Reis RL et al (2006) In vivo response to starch-based scaffolds designed for bone tissue engineering applications. J Biomed Mater Res Part A 80A:983–989

    Article  CAS  Google Scholar 

  198. Wu D, Samanta A, Srivastava RK et al (2017) Starch-derived nanographene oxide paves the way for electrospinnable and bioactive starch scaffolds for bone tissue engineering. Biomacromolecules 18:1582–1591

    Article  CAS  Google Scholar 

  199. Nourmohammadi J, Shahriarpanah S, Asadzadehzanjani N et al (2016) Biomimetic apatite layer formation on a novel citrate starch scaffold suitable for bone tissue engineering applications. Starch/Staerke 68:1275–1281

    Article  CAS  Google Scholar 

  200. Kang R, Marui T, Ghivizzani SC et al (1997) Ex vivo gene transfer to chondrocytes in full-thickness articular cartilage defects: a feasibility study. Osteoarthr Cartil 5:139–143

    Article  CAS  Google Scholar 

  201. Brittberg M, Lindahl A, Nilsson A et al (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    Article  CAS  Google Scholar 

  202. Biji Balakrishnan, R. Banerjee, (2011) Biopolymer-Based Hydrogels for Cartilage Tissue Engineering. Chemical Reviews 111 (8):4453-4474

    Article  Google Scholar 

  203. Francis Suh JK, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598

    Article  CAS  Google Scholar 

  204. Jin R, Moreira Teixeira LS, Dijkstra PJ et al (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30:2544–2551

    Article  CAS  Google Scholar 

  205. Sadeghi D, Karbasi S, Razavi S et al (2016) Electrospun poly(hydroxybutyrate)/chitosan blend fibrous scaffolds for cartilage tissue engineering. J Appl Polym Sci 133:1–9

    Article  CAS  Google Scholar 

  206. Kashi M, Baghbani F, Moztarzadeh F et al (2018) Green synthesis of degradable conductive thermosensitive oligopyrrole/chitosan hydrogel intended for cartilage tissue engineering. Int J Biol Macromol 107:1567–1575

    Article  CAS  Google Scholar 

  207. Bhardwaj N, Nguyen QT, Chen AC et al (2011) Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials 32:5773–5781

    Article  CAS  Google Scholar 

  208. Whu SW, Hung KC, Hsieh KH et al (2013) In vitro and in vivo evaluation of chitosan-gelatin scaffolds for cartilage tissue engineering. Mater Sci Eng C 33:2855–2863

    Article  CAS  Google Scholar 

  209. Naseri N, Deepa B, Mathew AP et al (2016) Nanocellulose-based interpenetrating polymer network (IPN) hydrogels for cartilage applications. Biomacromolecules 17:3714–3723

    Article  CAS  Google Scholar 

  210. Markstedt K, Mantas A, Tournier I et al (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496

    Article  CAS  Google Scholar 

  211. Nguyen D, Hgg DA, Forsman A et al (2017) Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep 7:1–10

    Article  CAS  Google Scholar 

  212. Feldmann EM, Sundberg JF, Bobbili B et al (2013) Description of a novel approach to engineer cartilage with porous bacterial nanocellulose for reconstruction of a human auricle. J Biomater Appl 28:626–640

    Article  CAS  Google Scholar 

  213. Nimeskern L, Martínez Ávila H, Sundberg J et al (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21

    Article  CAS  Google Scholar 

  214. Martínez Ávila H, Schwarz S, Feldmann EM et al (2014) Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl Microbiol Biotechnol 98:7423–7435

    Article  CAS  Google Scholar 

  215. Fu L, Zhou P, Zhang S, Yang G (2013) Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation. Mater Sci Eng C 33:2995–3000

    Article  CAS  Google Scholar 

  216. Keskin Z, Sendemir Urkmez A et al (2017) Novel keratin modified bacterial cellulose nanocomposite production and characterization for skin tissue engineering. Mater Sci Eng C 75:1144–1153

    Article  CAS  Google Scholar 

  217. Azarniya A, Eslahi N, Mahmoudi N et al (2016) Effect of graphene oxide nanosheets on the physico-mechanical properties of chitosan/bacterial cellulose nanofibrous composites. Compos Part A Appl Sci Manuf 85:113–122

    Article  CAS  Google Scholar 

  218. Zulkifli FH, Hussain FSJ, Rasad MSBA et al (2014) Nanostructured materials from hydroxyethyl cellulose for skin tissue engineering. Carbohydr Polym 114:238–245

    Article  CAS  Google Scholar 

  219. Rasad MSBA, Yusuff MM, Zulkifli FH et al (2017) A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications. Mater Sci Eng C 79:151–160

    Article  CAS  Google Scholar 

  220. Jung H-I, Choi H, Amirian J et al (2017) In vitro and in vivo evaluation of effectiveness of a novel TEMPO-oxidized cellulose nanofiber-silk fibroin scaffold in wound healing. Carbohydr Polym 177:284–296

    Article  CAS  Google Scholar 

  221. Shalumon KT, Anulekha KH, Chennazhi KP et al (2011) Fabrication of chitosan/poly(caprolactone) nanofibrous scaffold for bone and skin tissue engineering. Int J Biol Macromol 48:571–576

    Article  CAS  Google Scholar 

  222. Sarkar SD, Farrugia BL, Dargaville TR et al (2013) Chitosan-collagen scaffolds with nano/microfibrous architecture for skin tissue engineering. J Biomed Mater Res Part A 101:3482–3492

    Article  CAS  Google Scholar 

  223. Kumar PTS, Raj NM, Praveen G et al (2013) In vitro and in vivo evaluation of microporous chitosan hydrogel/nanofibrin composite bandage for skin tissue regeneration. Tissue Eng Part A 19:380–392

    Article  CAS  Google Scholar 

  224. Hussain A, Collins G, Yip D et al (2013) Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds. Biotechnol Bioeng 110:637–647

    Article  CAS  Google Scholar 

  225. Liu Y, Wang S, Zhang R (2017) Composite poly(lactic acid)/chitosan nanofibrous scaffolds for cardiac tissue engineering. Int J Biol Macromol 103:1130–1137

    Article  CAS  Google Scholar 

  226. Martins AM, Eng G, Caridade SG et al (2014) Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules 15:635–643

    Article  CAS  Google Scholar 

  227. Kalishwaralal K, Jeyabharathi S, Sundar K et al (2018) A novel biocompatible chitosan–Selenium nanoparticles (SeNPs) film with electrical conductivity for cardiac tissue engineering application. Mater Sci Eng C 92:151–160

    Article  CAS  Google Scholar 

  228. Baei P, Jalili-Firoozinezhad S, Rajabi-Zeleti S et al (2016) Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Mater Sci Eng C 63:131–141

    Article  CAS  Google Scholar 

  229. Chen PH, Liao HC, Hsu SH et al (2015) A novel polyurethane/cellulose fibrous scaffold for cardiac tissue engineering. RSC Adv 5:6932–6939

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. C. Tam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, D., Islam, M.S., Tam, M.K.C. (2019). The Use of Nano-Polysaccharides in Biomedical Applications. In: Lin, N., Tang, J., Dufresne, A., Tam, M. (eds) Advanced Functional Materials from Nanopolysaccharides. Springer Series in Biomaterials Science and Engineering, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-15-0913-1_5

Download citation

Publish with us

Policies and ethics