Skip to main content

Tunable Optical Materials Based on Self-assembly of Polysaccharide Nanocrystals

  • Chapter
  • First Online:
Advanced Functional Materials from Nanopolysaccharides

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 15))

Abstract

Rod-like polysaccharide nanocrystals, cellulose nanocrystal (CNC) and chitin nanocrystal (ChNC), can form the chiral nematic liquid crystal phase in suspensions, which can be preserved in the self-assembly solid materials (films) exhibiting colorful optical behaviors origin from the reflective wavelengths of the light. This chapter covers the studies on the topic of CNC and ChNC-based optical-tunable materials during last ten years including the self-assembly mechanism and liquid crystal behaviors of CNC nanoparticles in suspensions, preparation of optical films based on the pristine CNC and surface-modified CNC, summarization of diverse treatments and approaches to regulate the pitch and optical properties of self-assembly films (external energy fields and additives), and fabrication of mesoporous materials based on the strategy of CNC template. Finally, the self-assembly properties and optical applications of ChNC are discussed in the last section as the comparison with those studies introduced in CNC. The development of optical materials based on polysaccharide nanocrystals is an attracting functional application in the structural color field, and this chapter provides the summarization on the controlling strategy, structural design, regulating approach and mechanism explanation aiming to create the novel inspiration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dufresne A (2017) Nanocellulose: from nature to high performance tailored materials, 2nd edn. Berlin/Boston, Walter de Gruyter GmbH

    Book  Google Scholar 

  2. Buining PA, Philipse AP, Lekkerkerker HNW (1994) Phase behavior of aqueous dispersions of colloidal boehmite rods. Langmuir 10:2106–2114

    Article  CAS  Google Scholar 

  3. Min Dong X, Kimura T, Revol J-F et al (1996) Effects of ionic strength on the isotropic–chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12:2076–2082

    Article  Google Scholar 

  4. Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann NY Acad Sci 51:627–659

    Article  CAS  Google Scholar 

  5. Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212

    Article  CAS  Google Scholar 

  6. Khandelwal M, Windle A (2014) Origin of chiral interactions in cellulose supra-molecular microfibrils. Carbohydr Polym 106:128–131

    Article  CAS  Google Scholar 

  7. Parker RM, Guidetti G, Williams CA et al (2017) The self-assembly of cellulose nanocrystals: hierarchical design of visual appearance. Adv Mater 30:e1704477

    Article  CAS  Google Scholar 

  8. Dreher R, Meier G (1973) Optical properties of cholesteric liquid crystals. Phys Rev A 8:1616–1623

    Article  CAS  Google Scholar 

  9. Parker RM, Frka-Petesic B, Guidetti G et al (2016) Hierarchical self-assembly of cellulose nanocrystals in a confined geometry. ACS Nano 10:8443–8449

    Article  CAS  Google Scholar 

  10. Li Y, Jun-Yan Suen J, Prince E et al (2016) Colloidal cholesteric liquid crystal in spherical confinement. Nat Commun 7:12520

    Article  CAS  Google Scholar 

  11. Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  12. Schutz C, Van Rie J, Eyley S et al (2018) Effect of source on the properties and behavior of cellulose nanocrystal suspensions. ACS Sustain Chem Eng 6:8317–8324

    Article  CAS  Google Scholar 

  13. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054

    Article  CAS  Google Scholar 

  14. Wang N, Ding E, Cheng R (2008) Preparation and liquid crystalline properties of spherical cellulose nanocrystals. Langmuir 24:5–8

    Article  CAS  Google Scholar 

  15. Araki J, Wada M, Kuga S et al (2000) Birefringent glassy phase of a cellulose microcrystal suspension. Langmuir 16:2413–2415

    Article  CAS  Google Scholar 

  16. Schutz C, Agthe M, Fall AB et al (2015) Rod packing in chiral nematic cellulose nanocrystal dispersions studied by small-angle X-ray scattering and laser diffraction. Langmuir 31:6507–6513

    Article  CAS  Google Scholar 

  17. Castro-Guerrero CF, Gray DG (2014) Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate. Cellulose 21:2567–2577

    Article  CAS  Google Scholar 

  18. He J, Liu S, Li L et al (2017) Lyotropic liquid crystal behavior of carboxylated cellulose nanocrystals. Carbohydr Polym 164:364–369

    Article  CAS  Google Scholar 

  19. Nystrom G, Arcari M, Adamcik J et al (2018) Nanocellulose fragmentation mechanisms and inversion of chirality from the single particle to the cholesteric phase. ACS Nano 12:5141–5148

    Article  CAS  Google Scholar 

  20. Hasani M, Cranston ED, Westman G et al (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238–2244

    Article  CAS  Google Scholar 

  21. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27

    Article  CAS  Google Scholar 

  22. Xu Q, Yi J, Zhang X et al (2008) A novel amphotropic polymer based on cellulose nanocrystals grafted with azo polymers. Eur Polym J 44:2830–2837

    Article  CAS  Google Scholar 

  23. Yi J, Xu Q, Zhang X et al (2008) Chiral-nematic self-ordering of rod-like cellulose nanocrystals grafted with poly(styrene) in both thermotropic and lyotropic states. Polymer 49:4406–4412

    Article  CAS  Google Scholar 

  24. Yi J, Xu Q, Zhang X et al (2009) Temperature-induced chiral nematic phase changes of suspensions of poly(N, N-dimethylaminoethyl methacrylate)-grafted cellulose nanocrystals. Cellulose 16:989–997

    Article  CAS  Google Scholar 

  25. Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26:13450–13456

    Article  CAS  Google Scholar 

  26. Ye D, Yang J (2015) Ion-responsive liquid crystals of cellulose nanowhiskers grafted with acrylamide. Carbohydr Polym 134:458–466

    Article  CAS  Google Scholar 

  27. Azzam F, Heux L, Jean B (2016) Adjustment of the chiral nematic phase properties of cellulose nanocrystals by polymer grafting. Langmuir 32:4305–4312

    Article  CAS  Google Scholar 

  28. Min Dong XG, Gray D (1997) Effect of counterions on ordered phase formation in suspensions of charged rod-like cellulose crystallites. Langmuir 13:2404–2409

    Article  CAS  Google Scholar 

  29. Beck S, Bouchard J, Berry R (2011) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromol 12:167–172

    Article  CAS  Google Scholar 

  30. Orts WJ, Godbout L, Marchessault RH et al (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 31:5717–5725

    Article  CAS  Google Scholar 

  31. De France KJ, Yager KG, Hoare T et al (2016) Cooperative ordering and kinetics of cellulose nanocrystal alignment in a magnetic field. Langmuir 32:7564–7571

    Article  CAS  Google Scholar 

  32. Edgar CD, Gray DG (2002) Influence of dextran on the phase behavior of suspensions of cellulose nanocrystals. Macromolecules 35:7400–7406

    Article  CAS  Google Scholar 

  33. Beck-Candanedo S, Viet D, Gray DG (2006) Induced phase separation in low-ionic-strength cellulose nanocrystal suspensions containing high-molecular-weight blue dextrans. Langmuir 22:8690–8695

    Article  CAS  Google Scholar 

  34. Beck-Candanedo S, Viet D, Gray DG (2006) Induced phase separation in cellulose nanocrystal suspensions containing ionic dye species. Cellulose 13:629–635

    Article  CAS  Google Scholar 

  35. Beck-Candanedo S, Viet D, Gray DG (2007) Triphase equilibria in cellulose nanocrystal suspensions containing neutral and charged macromolecules. Macromolecules 40:3429–3436

    Article  CAS  Google Scholar 

  36. Chu G, Vasilyev G, Vilensky R et al (2018) Controlled assembly of nanocellulose-stabilized emulsions with periodic liquid crystal-in-liquid crystal organization. Langmuir 34:13263–13273

    Article  CAS  Google Scholar 

  37. Zhou Q, Brumer H, Teeri TT (2009) Self-organization of cellulose nanocrystals adsorbed with xyloglucan oligosaccharide–poly(ethylene glycol)–polystyrene triblock copolymer. Macromolecules 42:5430–5432

    Article  CAS  Google Scholar 

  38. Elazzouzi-Hafraoui S, Putaux J-L, Heux L (2009) Self-assembling and chiral nematic properties of organophilic cellulose nanocrystals. J Phys Chem B 113:11069–11075

    Article  CAS  Google Scholar 

  39. Tran A, Hamad WY, MacLachlan MJ (2018) Tactoid annealing improves order in self-assembled cellulose nanocrystal films with chiral nematic structures. Langmuir 34:646–652

    Article  CAS  Google Scholar 

  40. Hewson D, Vukusic P, Eichhorn SJ (2017) Reflection of circularly polarized light and the effect of particle distribution on circular dichroism in evaporation induced self-assembled cellulose nanocrystal thin films. AIP Adv 7:065308

    Article  CAS  Google Scholar 

  41. Majoinen J, Kontturi E, Ikkala O et al (2012) SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose 19:1599–1605

    Article  CAS  Google Scholar 

  42. Dumanli AG, van der Kooij HM, Kamita G et al (2014) Digital color in cellulose nanocrystal films. ACS Appl Mater Interfaces 6:12302–12306

    Article  CAS  Google Scholar 

  43. Pan J, Hamad W, Straus SK (2010) Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules 43:3851–3858

    Article  CAS  Google Scholar 

  44. Klockars KW, Tardy BL, Borghei M et al (2018) Effect of anisotropy of cellulose nanocrystal suspensions on stratification, domain structure formation, and structural colors. Biomacromol 19:2931–2943

    Article  CAS  Google Scholar 

  45. Hiratani T, Hamad WY, MacLachlan MJ (2017) Transparent depolarizing organic and inorganic films for optics and sensors. Adv Mater 29. https://doi.org/10.1002/adma.201606083

    Article  CAS  Google Scholar 

  46. Korolovych VF, Cherpak V, Nepal D et al (2018) Cellulose nanocrystals with different morphologies and chiral properties. Polymer 145:334–347

    Article  CAS  Google Scholar 

  47. Dumanli AG, Kamita G, Landman J et al (2014) Controlled, bio-inspired self-assembly of cellulose-based chiral reflectors. Adv Opt Mater 2:646–650

    Article  CAS  Google Scholar 

  48. Shrestha S, Diaz JA, Ghanbari S et al (2017) Hygroscopic swelling determination of cellulose nanocrystal (CNC) films by polarized light microscopy digital image correlation. Biomacromol 18:1482–1490

    Article  CAS  Google Scholar 

  49. Cherpak V, Korolovych VF, Geryak R et al (2018) Robust chiral organization of cellulose nanocrystals in capillary confinement. Nano Lett 18:6770–6777

    Article  CAS  Google Scholar 

  50. Espinha A, Guidetti G, Serrano MC et al (2016) Shape memory cellulose-based photonic reflectors. ACS Appl Mater Interfaces 8:31935–31940

    Article  CAS  Google Scholar 

  51. Beck S, Bouchard J, Chauve G et al (2013) Controlled production of patterns in iridescent solid films of cellulose nanocrystals. Cellulose 20:1401–1411

    Article  CAS  Google Scholar 

  52. Nguyen TD, Hamad WY, MacLachlan MJ (2013) Tuning the iridescence of chiral nematic cellulose nanocrystals and mesoporous silica films by substrate variation. Chem Commun (Camb) 49:11296–11298

    Article  CAS  Google Scholar 

  53. Haywood AD, Davis VA (2016) Effects of liquid crystalline and shear alignment on the optical properties of cellulose nanocrystal films. Cellulose 24:705–716

    Article  CAS  Google Scholar 

  54. Rofouie P, Alizadehgiashi M, Mundoor H et al (2018) Self-assembly of cellulose nanocrystals into semi-spherical photonic cholesteric films. Adv Funct Mater 28:1803852

    Article  CAS  Google Scholar 

  55. Mu X, Gray DG (2015) Droplets of cellulose nanocrystal suspensions on drying give iridescent 3-D “coffee-stain” rings. Cellulose 22:1103–1107

    Article  CAS  Google Scholar 

  56. Gencer A, Schutz C, Thielemans W (2017) Influence of the particle concentration and marangoni flow on the formation of cellulose nanocrystal films. Langmuir 33:228–234

    Article  CAS  Google Scholar 

  57. Tardy BL, Ago M, Guo J et al (2017) Optical properties of self-assembled cellulose nanocrystals films suspended at planar-symmetrical interfaces. Small 13:1702084–1702110

    Article  CAS  Google Scholar 

  58. Picard G, Simon D, Kadiri Y et al (2012) Cellulose nanocrystal iridescence: a new model. Langmuir 28:14799–14807

    Article  CAS  Google Scholar 

  59. Abraham E, Kam D, Nevo Y et al (2016) Highly modified cellulose nanocrystals and formation of epoxy-nanocrystalline cellulose (CNC) nanocomposites. ACS Appl Mater Interfaces 8:28086–28095

    Article  CAS  Google Scholar 

  60. Abraham E, Nevo Y, Slattegard R et al (2016) Highly hydrophobic thermally stable liquid crystalline cellulosic nanomaterials. ACS Sustain Chem Eng 4:1338–1346

    Article  CAS  Google Scholar 

  61. Lizundia E, Nguyen T-D, Vilas Jose L et al (2017) Chiroptical, morphological and conducting properties of chiral nematic mesoporous cellulose/polypyrrole composite films. J Mater Chem A 5:19184–19194

    Article  CAS  Google Scholar 

  62. Natarajan B, Emiroglu C, Obrzut J et al (2017) Dielectric characterization of confined water in chiral cellulose nanocrystal films. ACS Appl Mater Interfaces 9:14222–14231

    Article  CAS  Google Scholar 

  63. Lu T, Pan H, Ma J et al (2017) Cellulose nanocrystals/polyacrylamide composites of high sensitivity and cycling performance to gauge humidity. ACS Appl Mater Interfaces 9:18231–18237

    Article  CAS  Google Scholar 

  64. Nan F, Nagarajan S, Chen Y et al (2017) Enhanced toughness and thermal stability of cellulose nanocrystal iridescent films by alkali treatment. ACS Sustain Chem Eng 5:8951–8958

    Article  CAS  Google Scholar 

  65. Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromol 13:1486–1494

    Article  CAS  Google Scholar 

  66. Tang H, Guo B, Jiang H et al (2013) Fabrication and characterization of nanocrystalline cellulose films prepared under vacuum conditions. Cellulose 20:2667–2674

    Article  CAS  Google Scholar 

  67. Chen Q, Liu P, Nan F et al (2014) Tuning the iridescence of chiral nematic cellulose nanocrystal films with a vacuum-assisted self-assembly technique. Biomacromol 15:4343–4350

    Article  CAS  Google Scholar 

  68. Cranston ED, Gray DG (2006) Formation of cellulose-based electrostatic layer-by-layer films in a magnetic field. Sci Technol Adv Mater 7:319–321

    Article  CAS  Google Scholar 

  69. Frka-Petesic B, Guidetti G, Kamita G et al (2017) Controlling the photonic properties of cholesteric cellulose nanocrystal films with magnets. Adv Mater 29:1701469

    Article  CAS  Google Scholar 

  70. Habibi Y, Heim T, Douillard R (2008) Ac electric field-assisted assembly and alignment of cellulose nanocrystals. J Polym Sci, Part B: Polym Phys 46:1430–1436

    Article  CAS  Google Scholar 

  71. Aguié-Béghin V, Molinari M, Hambardzumyan A et al (20010) Preparation of ordered films of cellulose nanocrystals. ACS Symp Ser 1019:115–136

    Google Scholar 

  72. Frka-Petesic B, Radavidson H, Jean B et al (2017) Dynamically controlled iridescence of cholesteric cellulose nanocrystal suspensions using electric fields. Adv Mater 29:1606208–1606228

    Article  CAS  Google Scholar 

  73. Hoeger I, Rojas OJ, Efimenko K et al (2011) Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties. Soft Matter 7:1957

    Article  CAS  Google Scholar 

  74. Ličen M, Majaron B, Noh J et al (2016) Correlation between structural properties and iridescent colors of cellulose nanocrystalline films. Cellulose 23:3601–3609

    Article  CAS  Google Scholar 

  75. Tatsumi M, Teramoto Y, Nishio Y (2015) Different orientation patterns of cellulose nanocrystal films prepared from aqueous suspensions by shearing under evaporation. Cellulose 22:2983–2992

    Article  CAS  Google Scholar 

  76. Liu Y, Stoeckel D, Gordeyeva K et al (2018) Nanoscale assembly of cellulose nanocrystals during drying and redispersion. ACS Macro Lett 7:172–177

    Article  CAS  Google Scholar 

  77. Zhang YP (2012) Nanocrystalline cellulose for covert optical encryption. J Nanophotonics 6:063516

    Article  CAS  Google Scholar 

  78. Mu X, Gray DG (2014) Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process. Langmuir 30:9256–9260

    Article  CAS  Google Scholar 

  79. Dai S, Prempeh N, Liu D et al (2017) Cholesteric film of Cu(Ii)-doped cellulose nanocrystals for colorimetric sensing of ammonia gas. Carbohydr Polym 174:531–539

    Article  CAS  Google Scholar 

  80. Santos MV, Tercjak A, Gutierrez J et al (2017) Optical sensor platform based on cellulose nanocrystals (CNC)—4′-(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films. Carbohydr Polym 168:346–355

    Article  CAS  Google Scholar 

  81. Xu M, Li W, Ma C et al (2018) Multifunctional chiral nematic cellulose nanocrystals/glycerol structural colored nanocomposites for intelligent responsive films, photonic inks and iridescent coatings. J Mater Chem C 6:5391–5400

    Article  CAS  Google Scholar 

  82. He YD, Zhang ZL, Xue J et al (2018) Biomimetic optical cellulose nanocrystal films with controllable iridescent color and environmental stimuli-responsive chromism. ACS Appl Mater Interfaces 10:5805–5811

    Article  CAS  Google Scholar 

  83. Liu P, Guo X, Nan F et al (2017) Modifying mechanical, optical properties and thermal processability of iridescent cellulose nanocrystal films using ionic liquid. ACS Appl Mater Interfaces 9:3085–3092

    Article  CAS  Google Scholar 

  84. Song W, Lee JK, Gong MS et al (2018) Cellulose nanocrystal-based colored thin films for colorimetric detection of aldehyde gases. ACS Appl Mater Interfaces 10:10353–10361

    Article  CAS  Google Scholar 

  85. Bardet R, Belgacem N, Bras J (2015) Flexibility and color monitoring of cellulose nanocrystal iridescent solid films using anionic or neutral polymers. ACS Appl Mater Interfaces 7:4010–4018

    Article  CAS  Google Scholar 

  86. Gu M, Jiang C, Liu D et al (2016) Cellulose nanocrystal/poly(ethylene glycol) composite as an iridescent coating on polymer substrates: structure-color and interface adhesion. ACS Appl Mater Interfaces 8:32565–32573

    Article  CAS  Google Scholar 

  87. Yao K, Meng Q, Bulone V et al (2017) Flexible and responsive chiral nematic cellulose nanocrystal/poly(ethylene glycol) composite films with uniform and tunable structural color. Adv Mater 29. https://doi.org/10.1002/adma.201701323

    Article  CAS  Google Scholar 

  88. Wang B, Walther A (2015) Self-assembled, iridescent, crustacean-mimetic nanocomposites with tailored periodicity and layered cuticular structure. ACS Nano 9:10637–10646

    Article  CAS  Google Scholar 

  89. Zhu B, Merindol R, Benitez AJ et al (2016) Supramolecular engineering of hierarchically self-assembled, bioinspired, cholesteric nanocomposites formed by cellulose nanocrystals and polymers. ACS Appl Mater Interfaces 8:11031–11040

    Article  CAS  Google Scholar 

  90. Gao Y, Jin Z (2018) Iridescent chiral nematic cellulose nanocrystal/polyvinylpyrrolidone nanocomposite films for distinguishing similar organic solvents. ACS Sustain Chem Eng 6:6192–6202

    Article  CAS  Google Scholar 

  91. De La Cruz JA, Liu Q, Senyuk B et al (2018) Cellulose-based reflective liquid crystal films as optical filters and solar gain regulators. ACS Photonics 5:2468–2477

    Article  CAS  Google Scholar 

  92. Cheung CCY, Giese M, Kelly JA et al (2013) Iridescent chiral nematic cellulose nanocrystal/polymer composites assembled in organic solvents. ACS Macro Lett 2:1016–1020

    Article  CAS  Google Scholar 

  93. Therien-Aubin H, Lukach A, Pitch N et al (2015) Coassembly of nanorods and nanospheres in suspensions and in stratified films. Angew Chem Int Ed Engl 54:5618–5622

    Article  CAS  Google Scholar 

  94. Therien-Aubin H, Lukach A, Pitch N et al (2015) Structure and properties of composite films formed by cellulose nanocrystals and charged latex nanoparticles. Nanoscale 7:6612–6618

    Article  CAS  Google Scholar 

  95. Vollick B, Kuo P-Y, Thérien-Aubin H et al (2017) Composite cholesteric nanocellulose films with enhanced mechanical properties. Chem Mater 29:789–795

    Article  CAS  Google Scholar 

  96. Tatsumi M, Teramoto Y, Nishio Y (2012) Polymer composites reinforced by locking-in a liquid-crystalline assembly of cellulose nanocrystallites. Biomacromol 13:1584–1591

    Article  CAS  Google Scholar 

  97. Kelly JA, Shukaliak AM, Cheung CC et al (2013) Responsive photonic hydrogels based on nanocrystalline cellulose. Angew Chem Int Ed Engl 52:8912–8916

    Article  CAS  Google Scholar 

  98. Cho S, Li Y, Seo M et al (2016) Nanofibrillar stimulus-responsive cholesteric microgels with catalytic properties. Angew Chem Int Ed Engl 55:14014–14018

    Article  CAS  Google Scholar 

  99. Giese M, Blusch LK, Khan MK et al (2014) Responsive mesoporous photonic cellulose films by supramolecular cotemplating. Angew Chem Int Ed Engl 53:8880–8884

    Article  CAS  Google Scholar 

  100. Liu Q, Campbell MG, Evans JS et al (2014) Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals. Adv Mater 26:7178–7184

    Article  CAS  Google Scholar 

  101. Querejeta-Fernandez A, Chauve G, Methot M et al (2014) Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J Am Chem Soc 136:4788–4793

    Article  CAS  Google Scholar 

  102. Lukach A, Therien-Aubin H, Querejeta-Fernandez A et al (2015) Coassembly of gold nanoparticles and cellulose nanocrystals in composite films. Langmuir 31:5033–5041

    Article  CAS  Google Scholar 

  103. Chu G, Wang X, Yin H et al (2015) Free-standing optically switchable chiral plasmonic photonic crystal based on self-assembled cellulose nanorods and gold nanoparticles. ACS Appl Mater Interfaces 7:21797–21806

    Article  CAS  Google Scholar 

  104. Qu D, Zhang J, Chu G et al (2016) Chiral fluorescent films of gold nanoclusters and photonic cellulose with modulated fluorescence emission. J Mater Chem C 4:1764–1768

    Article  CAS  Google Scholar 

  105. Chu G, Yin H, Jiang H et al (2016) Ultrafast optical modulation of rationally engineered photonic–plasmonic coupling in self-assembled nanocrystalline cellulose/silver hybrid material. J Phys Chem C 120:27541–27547

    Article  CAS  Google Scholar 

  106. Chu G, Wang X, Chen T et al (2015) Chiral electronic transitions of YVO4: Eu3+nanoparticles in cellulose based photonic materials with circularly polarized excitation. J Mater Chem C 3:3384–3390

    Article  CAS  Google Scholar 

  107. Nguyen T-D, Hamad WY, MacLachlan MJ (2017) Near-IR-sensitive upconverting nanostructured photonic cellulose films. Adv Opt Mater 5:1600514

    Article  CAS  Google Scholar 

  108. Schlesinger M, Hamad WY, MacLachlan MJ (2015) Optically tunable chiral nematic mesoporous cellulose films. Soft Matter 11:4686–4694

    Article  CAS  Google Scholar 

  109. Ren Y, Wang T, Chen Z et al (2016) Liquid crystal behavior induced assembling fabrication of conductive chiral MWCNTs@NCCnanopaper. Appl Surf Sci 385:521–528

    Article  CAS  Google Scholar 

  110. Sun J, Zhang C, Yuan Z et al (2017) Composite films with ordered carbon nanotubes and cellulose nanocrystals. J Phys Chem C 121:8976–8981

    Article  CAS  Google Scholar 

  111. Pan H, Zhu C, Lu T et al (2017) A chiral smectic structure assembled from nanosheets and nanorods. Chem Commun (Camb) 53:1868–1871

    Article  CAS  Google Scholar 

  112. Dujardin E, Blaseby M, Mann S (2003) Synthesis of mesoporous silica by sol–gel mineralisation of cellulose nanorod nematic suspensions. J Mater Chem 13:696–699

    Article  CAS  Google Scholar 

  113. Shopsowitz KE, Qi H, Hamad WY et al (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468:422–425

    Article  CAS  Google Scholar 

  114. Kelly JA, Shopsowitz KE, Ahn JM et al (2012) Chiral nematic stained glass: controlling the optical properties of nanocrystalline cellulose-templated materials. Langmuir 28:17256–17262

    Article  CAS  Google Scholar 

  115. Kelly JA, Yu M, Hamad WY et al (2013) Large, crack-free freestanding films with chiral nematic structures. Adv Opt Mater 1:295–299

    Article  Google Scholar 

  116. Shopsowitz KE, Hamad WY, MacLachlan MJ (2012) Flexible and iridescent chiral nematic mesoporous organosilica films. J Am Chem Soc 134:867–870

    Article  CAS  Google Scholar 

  117. Giese M, De Witt JC, Shopsowitz KE et al (2013) Thermal switching of the reflection in chiral nematic mesoporous organosilica films infiltrated with liquid crystals. ACS Appl Mater Interfaces 5:6854–6859

    Article  CAS  Google Scholar 

  118. Wang PX, Hamad WY, MacLachlan MJ (2016) Polymer and mesoporous silica microspheres with chiral nematic order from cellulose nanocrystals. Angew Chem Int Ed 55:12460–12464

    Article  CAS  Google Scholar 

  119. Xu YT, Dai Y, Nguyen TD et al (2018) Aerogel materials with periodic structures imprinted with cellulose nanocrystals. Nanoscale 10:3805–3812

    Article  CAS  Google Scholar 

  120. Ivanova A, Fattakhova-Rohlfing D, Kayaalp BE et al (2014) Tailoring the morphology of mesoporous titania thin films through biotemplating with nanocrystalline cellulose. J Am Chem Soc 136:5930–5937

    Article  CAS  Google Scholar 

  121. Ivanova A, Fravventura MC, Fattakhova-Rohlfing D et al (2015) Nanocellulose-templated porous titania scaffolds incorporating presynthesized titania nanocrystals. Chem Mater 27:6205–6212

    Article  CAS  Google Scholar 

  122. Shopsowitz KE, Stahl A, Hamad WY et al (2012) Hard templating of nanocrystalline titanium dioxide with chiral nematic ordering. Angew Chem Int Ed Engl 51:6886–6890

    Article  CAS  Google Scholar 

  123. Xu J, Nguyen TD, Xie K et al (2015) Chiral nematic porous germania and germanium/carbon films. Nanoscale 7:13215–13223

    Article  CAS  Google Scholar 

  124. Chu G, Xu W, Qu D et al (2014) Chiral nematic mesoporous films of Y2O3: Eu3+ with tunable optical properties and modulated photoluminescence. J Mater Chem C 2:9189–9195

    Article  CAS  Google Scholar 

  125. Nguyen T-D, Kelly JA, Hamad WY et al (2015) Magnesiothermic reduction of thin films: towards semiconducting chiral nematic mesoporous silicon carbide and silicon structures. Adv Funct Mater 25:2175–2181

    Article  CAS  Google Scholar 

  126. Asefa T (2012) Chiral nematic mesoporous carbons from self-assembled nanocrystalline cellulose. Angew Chem Int Ed Engl 51:2008–2010

    Article  CAS  Google Scholar 

  127. Wang Y, Liu T, Lin X et al (2018) Self-templated synthesis of hierarchically porous N-doped carbon derived from biomass for supercapacitors. ACS Sustain Chem Eng 6:13932–13939

    Article  CAS  Google Scholar 

  128. Khan MK, Giese M, Yu M et al (2013) Flexible mesoporous photonic resins with tunable chiral nematic structures. Angew Chem Int Ed Engl 52:8921–8924

    Article  CAS  Google Scholar 

  129. Khan MK, Hamad WY, Maclachlan MJ (2014) Tunable mesoporous bilayer photonic resins with chiral nematic structures and actuator properties. Adv Mater 26:2323–2328

    Article  CAS  Google Scholar 

  130. Khan MK, Bsoul A, Walus K et al (2015) Photonic patterns printed in chiral nematic mesoporous resins. Angew Chem Int Ed Engl 54:4304–4308

    Article  CAS  Google Scholar 

  131. Qi H, Shopsowitz KE, Hamad WY et al (2011) Chiral nematic assemblies of silver nanoparticles in mesoporous silica thin films. J Am Chem Soc 133:3728–3731

    Article  CAS  Google Scholar 

  132. Nguyen T-D, Hamad WY, MacLachlan MJ (2014) CdS Quantum dots encapsulated in chiral nematic mesoporous silica: new iridescent and luminescent materials. Adv Funct Mater 24:777–783

    Article  CAS  Google Scholar 

  133. Revol JF, Marchessault RH (1993) In vitro chiral nematic ordering of chitin crystallites. Int J Biol Macromol 15:329–335

    Article  CAS  Google Scholar 

  134. Li J, Revol JF, Naranjo E et al (1996) Effect of electrostatic interaction on phase separation behaviour of chitin crystallite suspensions. Int J Biol Macromol 18:177–187

    Article  CAS  Google Scholar 

  135. Li J, Revol JF, Marchessault RH (1997) Effect of N-sulfonation on the colloidal and liquid crystal behavior of chitin crystallites. J Colloid Interface Sci 192:447–457

    Article  CAS  Google Scholar 

  136. Tzoumaki MV, Moschakis T, Biliaderis CG (2010) Metastability of nematic gels made of aqueous chitin nanocrystal dispersions. Biomacromol 11:175–181

    Article  CAS  Google Scholar 

  137. Liu Y, Liu M, Yang S et al (2018) Liquid crystalline behaviors of chitin nanocrystals and their reinforcing effect on natural rubber. ACS Sustain Chem Eng 6:325–336

    Article  CAS  Google Scholar 

  138. Liu D, Chang Y, Tian D et al (2018) Lyotropic liquid crystal self-assembly of H2O2-hydrolyzed chitin nanocrystals. Carbohydr Polym 196:66–72

    Article  CAS  Google Scholar 

  139. Nge TT, Hori N, Takemura A et al (2003) Synthesis and orientation study of a magnetically aligned liquid-crystal line chitin/poly(acrylic acid) composite. J Polym Sci, Part B: Polym Phys 41:711–714

    Article  CAS  Google Scholar 

  140. Nge TT, Hori N, Takemura AK et al (2003) Phase behavior of liquid crystalline chitin/acrylic acid liquid mixture. Langmuir 19:1390–1395

    Article  CAS  Google Scholar 

  141. Matsumura S, Kajiyama S, Nishimura T et al (2015) Formation of helically structured chitin/CaCO3 hybrids through an approach inspired by the biomineralization processes of crustacean cuticles. Small 11:5127–5133

    Article  CAS  Google Scholar 

  142. Nishimura T, Ito T, Yamamoto Y et al (2008) Macroscopically ordered polymer/CaCO3 hybrids prepared by using a liquid-crystalline template. Angew Chem 120:2842–2845

    Article  Google Scholar 

  143. Alonso B, Belamie E (2010) Chitin-silica nanocomposites by self-assembly. Angew Chem Int Ed Engl 49:8201–8204

    Article  CAS  Google Scholar 

  144. Belamie E, Boltoeva MY, Yang K et al (2011) Tunable hierarchical porosity from self-assembled chitin–silica nano-composites. J Mater Chem 21:16997

    Article  CAS  Google Scholar 

  145. Boltoeva MY, Dozov I, Davidson P et al (2013) Electric-field alignment of chitin nanorod-siloxane oligomer reactive suspensions. Langmuir 29:8208–8212

    Article  CAS  Google Scholar 

  146. Nguyen TD, Shopsowitz KE, MacLachlan MJ (2013) Mesoporous silica and organosilica films templated by nanocrystalline chitin. Chemistry 19:15148–15154

    Article  CAS  Google Scholar 

  147. Nguyen T-D, Shopsowitz KE, MacLachlan MJ (2014) Mesoporous nitrogen-doped carbon from nanocrystalline chitin assemblies. J Mater Chem A 2:5915

    Article  CAS  Google Scholar 

  148. Sachse A, Hulea V, Kostov KL et al (2012) Efficient mesoporous silica-titania catalysts from colloidal self-assembly. Chem Commun (Camb) 48:10648–10650

    Article  CAS  Google Scholar 

  149. Sachse A, Hulea V, Kostov KL et al (2015) Improved silica-titania catalysts by chitin biotemplating. Catal Sci Technol 5:415–427

    Article  CAS  Google Scholar 

  150. Sachse A, Cardoso L, Kostov KL et al (2015) Mesoporous alumina from colloidal biotemplating of al clusters. Chemistry 21:3206–3210

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the National Natural Science Foundation of China (51603159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y., Chen, Z., Tang, J., Lin, N. (2019). Tunable Optical Materials Based on Self-assembly of Polysaccharide Nanocrystals. In: Lin, N., Tang, J., Dufresne, A., Tam, M. (eds) Advanced Functional Materials from Nanopolysaccharides. Springer Series in Biomaterials Science and Engineering, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-15-0913-1_3

Download citation

Publish with us

Policies and ethics