Skip to main content

Surface Modification with Grafting Functional Molecules on Nanopolysaccharides

  • Chapter
  • First Online:
Book cover Advanced Functional Materials from Nanopolysaccharides

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 15))

Abstract

Numerous active hydroxyl groups and charges derived from the hydrolysis provide the surface chemistry and possible modification of nanopolysaccharides. Taking the strategy of surface grafting functional molecules, nanopolysaccharides can possess the specific function serving as the nanoparticle carriers in diverse applications. This chapter introduces several typical cases of surface modification with functional molecules on nanopolysaccharides, including grafting the antibacterial molecules, fluorescent molecules, stimuli-responsive molecules, as well as the superhydrophobic modification and drug-delivery modification. The emphasis of this chapter is put on the summarization of various functional species grafted on nanopolysaccharides and then discussion on how to achieve this modification in each case. We conclude the strategies of functional modifications on nanopolysaccharides and comment their different advantages based on the comparison of reported studies, while leaving the description of functional materials production and their functional applications in the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang SW, Sun JS, Jia YX et al (2016) Nanocrystalline cellulose-assisted generation of silver nanoparticles for nonenzymatic glucose detection and antibacterial agent. Biomacromol 17:2472–2478

    Article  CAS  Google Scholar 

  2. Ma PM, Jiang L, Yu MM et al (2016) Green antibacterial nanocomposites from poly(lactide)/poly(butylene adipate-co-terephthalate)/nanocrystal cellulose silver nanohybrids. ACS Sustain Chem Eng 4:6417–6426

    Article  CAS  Google Scholar 

  3. Shi ZQ, Tang JT, Chen L et al (2015) Enhanced colloidal stability and antibacterial performance of silver nanoparticles/cellulose nanocrystal hybrids. J Mater Chem B 3:603–611

    Article  CAS  Google Scholar 

  4. Drogat N, Granet R, Sol V et al (2011) Antimicrobial silver nanoparticles generated on cellulose nanocrystals. J Nanopart Res 13:1557–1562

    Article  CAS  Google Scholar 

  5. Kebede MA, Imae T, Sabrina (2017) Cellulose fibers functionalized by metal nanoparticles stabilized in dendrimer for formaldehyde decomposition and antimicrobial activity. Chem Eng J 311:340–347

    Article  CAS  Google Scholar 

  6. Hassanpour A, Asghari S, Lakouraj MM (2017) Synthesis, characterization and antibacterial evaluation of nanofibrillated cellulose grafted by a novel quinolinium silane salt. RSC Adv 7:23907–23916

    Article  Google Scholar 

  7. Oun AA, Rhim JW (2017) Preparation of multifunctional chitin nanowhiskers/ZnO-Ag NPs and their effect on the properties of carboxymethyl cellulose-based nanocomposite film. Carbohydr Polym 169:467–479

    Article  CAS  Google Scholar 

  8. Vasanthan N, Bespalova Y, Kwon D (2017) Surface modification and antimicrobial properties of cellulose nanocrystals. Paper presented at 254th National meeting and exposition of the American-chemical-society (ACS) on chemistry’s impact on the global economy, Washington DC, 20–24 Aug 2017

    Google Scholar 

  9. Chauhan P, Yan N (2017) Novel nitroaniline-cellulose nanohybrids: nitro radical photo-release and its antibacterial action. Carbohydr Polym 174:1106–1113

    Article  CAS  Google Scholar 

  10. Abouhmad A, Dishisha T, Amin MA et al (2017) Immobilization to positively charged cellulose nanocrystals enhances the antibacterial activity and stability of hen egg white and T4 lysozyme. Biomacromol 18:1600–1608

    Article  CAS  Google Scholar 

  11. de Castro DO, Bras J, Gandini A et al (2016) Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process. Carbohydr Polym 137:1–8

    Article  CAS  Google Scholar 

  12. Yu HY, Chen GY, Wang YB et al (2014) A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity. Cellulose 22(1):261–273

    Article  CAS  Google Scholar 

  13. Lavoine N, Desloges I, Manship B et al (2015) Antibacterial paperboard packaging using microfibrillated cellulose. J Food Sci Technol 52(9):5590–5600

    Article  CAS  Google Scholar 

  14. Tyagi P, Mathew R, Opperman CH et al (2018) High strength antibacterial chitosan-cellulose nanocrystals composite tissue paper. Langmuir 35:104–112

    Article  CAS  Google Scholar 

  15. Jafary R, Mehrizi MK, Hekmatimoghaddam SH et al (2015) Antibacterial property of cellulose fabric finished by allicin-conjugated nanocellulose. J Text I 106:683–689

    Article  CAS  Google Scholar 

  16. Feese E, Sadeghifar H, Gracz HS et al (2011) Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties. Biomacromol 12:3528–3539

    Article  CAS  Google Scholar 

  17. Saini1 S, Quinot D, Lavoine N et al (2017) Beta-Cyclodextrin-grafted TEMPO-oxidized cellulose nanofibers for sustained release of essential oil. J Mater Sci 52:3849–3861

    Article  CAS  Google Scholar 

  18. Andresen M, Stenstad P, Moretro T et al (2007) Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromol 8:2149–2155

    Article  CAS  Google Scholar 

  19. Nguyen HL, Jo YK, Cha M et al (2016) Mussel-inspired anisotropic nanocellulose and silver nanoparticle composite with improved mechanical properties, electrical conductivity and antibacterial activity. Polymers-Basel 8:102–115

    Article  CAS  Google Scholar 

  20. Bober P, Liu J, Mikkonen KS et al (2014) Biocomposites of nanofibrillated cellulose, polypyrrole, and silver nanoparticles with electroconductive and antimicrobial properties. Biomacromol 15:3655–3663

    Article  CAS  Google Scholar 

  21. Díez I, Eronen P, Österberg M et al (2011) Functionalization of nanofibrillated cellulose with silver nanoclusters: fluorescence and antibacterial activity. Macromol Biosci 11(9):1185–1191

    Article  CAS  Google Scholar 

  22. Li ZH, Zhang M, Cheng D et al (2016) Preparation of silver nanoparticles immobilized onto chitin nanochitin nanocrystals and their application to cellulose paper for imparting antimicrobial activity. Carbohydr Polym 151:834–840

    Article  CAS  Google Scholar 

  23. Shankar S, Reddy JP, Rhim JW et al (2015) Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydr Polym 117:468–475

    Article  CAS  Google Scholar 

  24. Dutta AK, Egusa M, Kaminaka H et al (2015) Facile preparation of surface N-halamine chitin nanofiber to endow antibacterial and antifungal activitie. Carbohydr Polym 115:342–347

    Article  CAS  Google Scholar 

  25. Nata IF, Wu TM, Chen JK et al (2014) A chitin nanofibril reinforced multifunctional monolith poly(vinyl alcohol) cryogel. J Mater Chem B 2(26):4108–4113

    Article  CAS  Google Scholar 

  26. González K, García-Astrain C, Santamaria-Echart A et al (2018) Starch/graphene hydrogels via click chemistry with relevant electrical and antibacterial properties. Carbohydr Polym 202:372–381

    Article  CAS  Google Scholar 

  27. Tang JT, Song Y, Tanvir S et al (2015) Polyrhodanine coated cellulose nanocrystals: a sustainable antimicrobial agent. ACS Sustain Chem Eng 3:1801–1809

    Article  CAS  Google Scholar 

  28. Qin Y, Zhang S, Yu J et al (2016) Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films. Carbohydr Polym 147:372–378

    Article  CAS  Google Scholar 

  29. Li MC, Wu QL, Song KL et al (2016) Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: influence of partial deacetylation. ACS Sustain Chem Eng 4:4385–4395

    Article  CAS  Google Scholar 

  30. Jiang SS, Qin Y, Yang J et al (2017) Enhanced antibacterial activity of lysozyme immobilized on chitin nanowhiskers. Food Chem 221:1507–1513

    Article  CAS  Google Scholar 

  31. Chen JD, Zhou ZX, Chen ZX et al (2017) A fluorescent nanoprobe based on cellulose nanocrystals with porphyrin pendants for selective quantitative trace detection of Hg2+. New J Chem 41:10272–10280

    Article  CAS  Google Scholar 

  32. Khabibullin A, Alizadehgiashi M, Khuu N et al (2017) Injectable shear-thinning fluorescent hydrogel formed by cellulose nanocrystals and graphene quantum dots. Langmuir 33(43):12344–12350

    Article  CAS  Google Scholar 

  33. Abitbol T, Marway HS, Kedzior SA et al (2017) Hybrid fluorescent nanoparticles from quantum dots coupled to cellulose nanocrystals. Cellulose 24(3):1287–1293

    Article  CAS  Google Scholar 

  34. Leng T, Jalcubek ZJ, Mazloumi M et al (2017) Ensemble and single particle fluorescence characterization of dye-labeled cellulose nanocrystals. Langmuir 33(32):8002–8011

    Article  CAS  Google Scholar 

  35. Gorgieva S, Vivod V, Maver U et al (2017) Internalization of (bis)phosphonate-modified cellulose nanocrystals by human osteoblast cells. Cellulose 24(10):4235–4252

    Article  CAS  Google Scholar 

  36. Herreros-Lopez A, Carini M, Da Ros T et al (2017) Nanocrystalline cellulose-fullerene: novel conjugates. Carbohydr Polym 164:92–101

    Article  CAS  Google Scholar 

  37. Ding QJ, Zeng JS, Wang B et al (2017) Influence of binding mechanism on labeling efficiency and luminous properties of fluorescent cellulose nanocrystals. Carbohydr Polym 175:105–112

    Article  CAS  Google Scholar 

  38. Qu D, Zhang JN, Chu G et al (2016) Chiral fluorescent films of gold nanoclusters and photonic cellulose with modulated fluorescence emission. J Mater Chem C 4:1764–1768

    Article  CAS  Google Scholar 

  39. Parsamanesh M, Tehrani AD (2016) Synthesize of new fluorescent polymeric nanoparticle using modified cellulose nanowhisker through click reaction. Carbohydr Polym 136:1323–1331

    Article  CAS  Google Scholar 

  40. Sîrbu E, Eyley S, Thielemans W (2016) Coumarin and carbazole fluorescently modified cellulose nanocrystals using a one-step esterification procedure. Can J Chem Eng 94(11):2186–2194

    Article  CAS  Google Scholar 

  41. Wu WB, Huang F, Pan SB et al (2015) Thermo-responsive and fluorescent cellulose. J Mater Chem A 3:1995–2005

    Article  CAS  Google Scholar 

  42. Chen L, Cao W, Grishkewich N et al (2015) Synthesis and characterization of pH-responsive and fluorescent poly (amidoamine) dendrimer-grafted cellulose nanocrystals. J Colloid Interface Sci 450:101–108

    Article  CAS  Google Scholar 

  43. Colombo L, Zoia L, Violatto MB et al (2015) Organ distribution and bone tropism of cellulose nanocrystals in living mice. Biomacromol 16(9):2862–2871

    Article  CAS  Google Scholar 

  44. Grate JW, Mo KF, Shin Y et al (2015) Alexa fluor-labeled fluorescent cellulose nanocrystals for bioimaging solid cellulose in spatially structured microenvironments. Bioconjug Chem 26(3):593–601

    Article  CAS  Google Scholar 

  45. Schyrr B, Pasche S, Voirin G et al (2014) Biosensors based on porous cellulose nanocrystal-poly(vinyl alcohol) scaffolds. ACS Appl Mater Interfaces 6(15):12674–12683

    Article  CAS  Google Scholar 

  46. Abitbol T, Palermo A, Moran-Mirabal JM et al (2013) Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents. Biomacromol 14(9):3278–3284

    Article  CAS  Google Scholar 

  47. Hassan ML, Moorefield CM, Elbatal HS et al (2012) Fluorescent cellulose nanocrystals via supramolecular assembly of terpyridine-modified cellulose nanocrystals and terpyridine-modified perylene. Mater Sci Eng B 177(4):350–358

    Article  CAS  Google Scholar 

  48. Mahmoud KA, Mena JA, Male KB et al (2010) Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS Appl Mater Interfaces 2(10):2924–2932

    Article  CAS  Google Scholar 

  49. Zhou J, Butchosa N, Jayawaredena S et al (2015) Synthesis of multifunctional cellulose nanocrystals for lectin recognition and bacterial imaging. Biomacromol 16:1426–1432

    Article  CAS  Google Scholar 

  50. Ikai T, Suzuki D, Kojima Y et al (2016) Chiral fluorescent sensors based on cellulose derivatives bearing terthienyl pendants. Polym Chem 7:4793–4801

    Article  CAS  Google Scholar 

  51. Yang G, Wan X, Su Y et al (2016) Acidophilic S-doped carbon quantum dots derived from cellulose fibers and their fluorescence sensing performance for metal ions in an extremely strong acid environment. J Mater Chem A 4:12841–12849

    Article  CAS  Google Scholar 

  52. Navarro JRG, Conzatti G, Yu Y et al (2015) Multicolor fluorescent labeling of cellulose nanofibrils by click chemistry. Biomacromol 16:1293–1300

    Article  CAS  Google Scholar 

  53. Junka K, Guo J, Filpponen I et al (2014) Modification of cellulose nanofibrils with luminescent carbon dots. Biomacromol 15:876–881

    Article  CAS  Google Scholar 

  54. Niu Q, Gao K, Wu W (2014) Cellulose nanofibril based graft conjugated polymer films act as a chemosensor for nitroaromatic. Carbohydr Polym 110:47–52

    Article  CAS  Google Scholar 

  55. Zhou J, Butchosa N, Jayawardena HSN et al (2014) Glycan-functionalized fluorescent chitin nanocrystals for biorecognition applications. Bioconjugate Chem 25:640–643

    Article  CAS  Google Scholar 

  56. Shahid UNM, Deshpande AP, Rao CL (2015) Electro-mechanical properties of hydrogel composites with micro- and nano-cellulose fillers. Smart Mater Struct 24:095013

    Article  CAS  Google Scholar 

  57. Qian Z, Wang Z, Zhao N et al (2018) Aerogels derived from polymer nanofibers and their applications. Macromol Rapid Comm 39:1700724

    Article  CAS  Google Scholar 

  58. Sabo R, Yermakov A, Law CT et al (2016) Nanocellulose-enabled electronics energy harvesting devices smart materials and sensors: a review. J Renew Mater 4:297–312

    Article  CAS  Google Scholar 

  59. Natterodt J, Petri-Fink A, Weder C et al (2017) Cellulose nanocrystals: surface modification applications and opportunities at interfaces. Chimia Int J Chem 71:376–383

    Article  CAS  Google Scholar 

  60. Calvo-Correas T, Garrido P, Alonso-Varona A et al (2018) Biocompatible thermoresponsive polyurethane bionanocomposites with chitin nanocrystals. J Appl Polym Sci 136:47430

    Article  CAS  Google Scholar 

  61. Li Y, Ying Y, Zhou Y et al (2019) A pH-indicating intelligent packaging composed of chitosan-purple potato extractions strength by surface-deacetylated chitin nanofibers. Int J Biol Macromol 127:376–384

    Article  CAS  Google Scholar 

  62. Kose O, Tran A, Lewis L et al (2019) Unwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable optics. Nat Commun 10:510

    Article  CAS  Google Scholar 

  63. Kose O, Boott CE, Hamad WY et al (2019) Stimuli-responsive anisotropic materials based on unidirectional organization of cellulose nanocrystals in an elastomer. Macromolecules 52:5317–5324

    Article  CAS  Google Scholar 

  64. Tang J, Berry RM, Tam KC (2016) Stimuli-responsive cellulose nanocrystals for surfactant-free oil harvesting. Biomacromol 17:1748–1756

    Article  CAS  Google Scholar 

  65. Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H (2018) Synthesis of dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid)-grafted cellulose nanocrystals by reversible addition-fragmentation chain transfer polymerization. J Biomed Mater Res A 106:231–243

    Article  CAS  Google Scholar 

  66. Malho JM, Brand J, Pecastaings G et al (2018) Multifunctional stimuli-responsive cellulose nanocrystals via dual surface modification with genetically engineered elastin-like polypeptides and poly(acrylic acid). ACS Macro Lett 7:646–650

    Article  CAS  Google Scholar 

  67. Wang Y, Heim LO, Xu Y et al (2015) Transparent stimuli-responsive films from cellulose-based organogel nanoparticles. Adv Funct Mater 25:1434–1441

    Article  CAS  Google Scholar 

  68. Smyth M, Rader C, Bras J et al (2017) Characterization and mechanical properties of ultraviolet stimuli-responsive functionalized cellulose nanocrystal alginate composites. J Appl Polym Sci 135:45857

    Article  CAS  Google Scholar 

  69. Zhang Z, Cheng M, San Gabriel M et al (2019) Polymeric hollow microcapsules (PHM) via cellulose nanocrystal stabilized pickering emulsion polymerization. J Colloid Interface Sci 555:489–497

    Article  CAS  Google Scholar 

  70. Gicquel E, Martin C, Gauthier Q et al (2019) Tailoring rheological properties of thermoresponsive hydrogels through block copolymer adsorption to cellulose nanocrystals. Biomacromol 20:2545–2556

    Article  CAS  Google Scholar 

  71. Cudjoe E, Khani S, Way AE et al (2017) Biomimetic reversible heat-stiffening polymer nanocomposites. ACS Cent Sci 3:886–894

    Article  CAS  Google Scholar 

  72. Wu W, Song R, Xu Z et al (2018) Fluorescent cellulose nanocrystals with responsiveness to solvent polarity and ionic strength. Sens Actuators B 275:490–498

    Article  CAS  Google Scholar 

  73. Haqani M, Roghani-Mamaqani H, Salami-Kalajahi M (2017) Synthesis of dual-sensitive nanocrystalline cellulose-grafted block copolymers of N-isopropylacrylamide and acrylic acid by reversible addition-fragmentation chain transfer polymerization. Cellulose 24:2241–2254

    Article  CAS  Google Scholar 

  74. Garcia-Valdez O, Brescacin T, Arredondo J et al (2017) Grafting CO2-responsive polymers from cellulose nanocrystals via nitroxide-mediated polymerisation. Polym Chem 8:4124–4131

    Article  CAS  Google Scholar 

  75. Cho S, Li Y, Seo M et al (2016) Nanofibrillar stimulus-responsive cholesteric microgels with catalytic properties. Angew Chem Int Ed 128:14220–14224

    Article  Google Scholar 

  76. Zhao L, Li W, Plog A et al (2014) Multi-responsive cellulose nanocrystal–rhodamine conjugates: an advanced structure study by solid-state dynamic nuclear polarization (DNP) NMR. Phys Chem Chem Phys 16:26322–26329

    Article  CAS  Google Scholar 

  77. Li Y, Zhu L, Wang B et al (2018) Fabrication of thermoresponsive polymer-functionalized cellulose sponges: flexible porous materials for stimuli-responsive catalytic systems. ACS Appl Mater Interfaces 10:27831–27839

    Article  CAS  Google Scholar 

  78. Lu J, Zhu W, Dai L et al (2019) Fabrication of thermo- and pH-sensitive cellulose nanofibrils-reinforced hydrogel with biomass nanoparticles. Carbohydr Polym 215:289–295

    Article  CAS  Google Scholar 

  79. Sanandiya ND, Vasudevan J, Das R et al (2019) Stimuli-responsive injectable cellulose thixogel for cell encapsulation. Int J Biol Macromol 130:1009–1017

    Article  CAS  Google Scholar 

  80. Anirudhan TS, Sekhar VC, Shainy F et al (2019) Effect of dual stimuli responsive dextran/nanocellulose polyelectrolyte complexes for chemophotothermal synergistic cancer therapy. Int J Biol Macromol 135:776–789

    Article  CAS  Google Scholar 

  81. Low LE, Tan LTH, Goh BH et al (2019) Magnetic cellulose nanocrystal stabilized pickering emulsions for enhanced bioactive release and human colon cancer therapy. Int J Biol Macromol 127:76–84

    Article  CAS  Google Scholar 

  82. Ndong Ntoutoume GMA, Granet R, Mbakidi JP et al (2016) Development of curcumin–cyclodextrin/cellulose nanocrystals complexes: New anticancer drug delivery systems. Bioorg Med Chem Lett 26:941–945

    Article  CAS  Google Scholar 

  83. Golshan M, Salami-Kalajahi M, Roghani-Mamaqani H et al (2017) Poly(propylene imine) dendrimer-grafted nanocrystalline cellulose: Doxorubicin loading and release behavior. Polymer 117:287–294

    Article  CAS  Google Scholar 

  84. Akhlaghi SP, Berry RC, Tam KC (2013) Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20:1747–1764

    Article  CAS  Google Scholar 

  85. Gorgieva S, Vivod V, Maver U et al (2017) Internalization of (bis)phosphonate-modified cellulose nanocrystals by human osteoblast cells. Cellulose 24:4235–4252

    Article  CAS  Google Scholar 

  86. Rescignano N, Fortunati E, Montesano S et al (2014) PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles. Carbohydr Polym 99:47–58

    Article  CAS  Google Scholar 

  87. Akhlaghi SP, Tiong D, Berry RM et al (2014) Comparative release studies of two cationic model drugs from different cellulose nanocrystal derivatives. Eur J Pharm Biopharm 88:207–215

    Article  CAS  Google Scholar 

  88. Simi CK, Emilia Abraham T (2007) Hydrophobic grafted and cross-linked starch nanoparticles for drug delivery. Bioprocess Biosyst Eng 30:173–180

    Article  CAS  Google Scholar 

  89. Anirudhan TS, Binusreejayan B, Christa J (2017) Multi-polysaccharide based stimuli responsive polymeric network for the in vitro release of 5-fluorouracil and levamisole hydrochloride. New J Chem 41:11979–11990

    Article  CAS  Google Scholar 

  90. Rahimi M, Shojaei S, Safa KD et al (2017) Biocompatible magnetic tris(2-aminoethyl)amine functionalized nanocrystalline cellulose as a novel nanocarrier for anticancer drug delivery of methotrexate. New J Chem 41:2160–2168

    Article  CAS  Google Scholar 

  91. You J, Cao J, Zhao Y et al (2016) Improved mechanical properties and sustained release behavior of cationic cellulose nanocrystals reinforced cationic cellulose injectable hydrogels. Biomacromol 17:2839–2848

    Article  CAS  Google Scholar 

  92. Wang H, He J, Zhang M et al (2015) A new pathway towards polymer modified cellulose nanocrystals via a “grafting onto” process for drug delivery. Polym Chem 6:4206–4209

    Article  CAS  Google Scholar 

  93. Ndong Ntoutoume GMA, Grassot V, Brégier F et al (2017) PEI-cellulose nanocrystal hybrids as efficient siRNA delivery agents—synthesis, physicochemical characterization and in vitro evaluation. Carbohydr Polym 164:258–267

    Article  CAS  Google Scholar 

  94. Hu H, Yuan W, Liu FS et al (2015) Redox-responsive polycation-functionalized cotton cellulose nanocrystals for effective cancer treatment. ACS Appl Mater Interfaces 7:8942–8951

    Article  CAS  Google Scholar 

  95. Dong S, Cho HJ, Lee YW et al (2014) Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromol 15:1560–1567

    Article  CAS  Google Scholar 

  96. Zainuddin N, Ahmad I, Kargarzadeh H et al (2017) Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin. Carbohydr Polym 163:261–269

    Article  CAS  Google Scholar 

  97. Akhlaghi SP, Berry RM, Tam KC (2014) Modified cellulose nanocrystal for vitamin C delivery. AAPS Pharm Sci Tech 16:306–314

    Article  CAS  Google Scholar 

  98. Paukkonen H, Kunnari M, Laurén P et al (2017) Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release. Int J Pharm 532:269–280

    Article  CAS  Google Scholar 

  99. Fakhri A, Tahami S, Nejad PA (2017) Preparation and characterization of Fe3O4–Ag2O quantum dots decorated cellulose nanofibers as a carrier of anticancer drugs for skin cancer. J Photochem Photobiol B 175:83–88

    Article  CAS  Google Scholar 

  100. Li C, Wang ZH, Yu DG et al (2014) Tunable biphasic drug release from ethyl cellulose nanofibers fabricated using a modified coaxial electrospinning process. Nanoscale Res Lett 9:258

    Article  CAS  Google Scholar 

  101. Svagan AJ, Müllertz A, Löbmann K (2017) Floating solid cellulose nanofibre nanofoams for sustained release of the poorly soluble model drug furosemide. J Pharm Pharmacol 69:1477–1484

    Article  CAS  Google Scholar 

  102. Paukkonen H, Ukkonen A, Szilvay G et al (2017) Hydrophobin-nanofibrillated cellulose stabilized emulsions for encapsulation and release of BCS class II drugs. Eur J Pharm Sci 100:238–248

    Article  CAS  Google Scholar 

  103. Hu H, Hou XJ, Wang XC et al (2016) Gold nanoparticle-conjugated heterogeneous polymer brush-wrapped cellulose nanocrystals prepared by combining different controllable polymerization techniques for theranostic applications. Polym Chem 7:3107–3116

    Article  CAS  Google Scholar 

  104. Arslan O, Aytac Z, Uyar T (2016) Superhydrophobic, hybrid, electrospun cellulose acetate nanofibrous mats for oil/water separation by tailored surface modification. ACS Appl Mater Interfaces 8:19747–19754

    Article  CAS  Google Scholar 

  105. Song J, Orlando RJ (2013) Approaching super-hydrophobicity from cellulosic materials: a review. Nord Pulp Pap Res J 28:216–238

    Article  CAS  Google Scholar 

  106. Reverdy C, Belgacem N, Moghaddam MS et al (2018) One-step superhydrophobic coating using hydrophobized cellulose nanofibrils. Colloid Surf A 544:152–158

    Article  CAS  Google Scholar 

  107. Bashar MM, Zhu H, Yamamoto S et al (2017) Superhydrophobic surfaces with fluorinated cellulose nanofiber assemblies for oil–water separation. RSC Adv 7:37168–37174

    Article  CAS  Google Scholar 

  108. Orsolini P, Antonini C, Stojanovic A et al (2017) Superhydrophobicity of nanofibrillated cellulose materials through polysiloxane nanofilaments. Cellulose 25:1127–1146

    Article  CAS  Google Scholar 

  109. Huang J, Lyu S, Chen Z et al (2019) A facile method for fabricating robust cellulose nanocrystal/SiO2 superhydrophobic coatings. J Colloid Interface Sci 536:349–362

    Article  CAS  Google Scholar 

  110. Khanjani P, King AWT, Partl GJ et al (2018) Superhydrophobic paper from nanostructured fluorinated cellulose esters. ACS Appl Mater Interfaces 10:11280–11288

    Article  CAS  Google Scholar 

  111. Lin W, Hu X, You X et al (2018) Hydrophobic modification of nanocellulose via a two-step silanation method. Polymers 10:1035

    Article  CAS  Google Scholar 

  112. Guo J, Fang W, Welle A et al (2016) Superhydrophobic and slippery lubricant-infused flexible transparent nanocellulose films by photoinduced thiol-ene functionalization. ACS Appl Mater Interface 8:34115–34122

    Article  CAS  Google Scholar 

  113. Zhou S, Liu P, Wang M et al (2016) Sustainable, reusable, and superhydrophobic aerogels from microfibrillated cellulose for highly effective oil/water separation. ACS Sustain Chem Eng 4:6409–6416

    Article  CAS  Google Scholar 

  114. Shang Y, Si Y, Raza A et al (2012) An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation. Nanoscale 4:7847–7854

    Article  CAS  Google Scholar 

  115. Mertaniemi H, Laukkanen A, Teirfolk J-E et al (2012) Functionalized porous microparticles of nanofibrillated cellulose for biomimetic hierarchically structured superhydrophobic surfaces. RSC Adv 2:2882–2886

    Article  CAS  Google Scholar 

  116. Gu L, Jiang B, Song J et al (2018) Effect of lignin on performance of lignocellulose nanofibrils for durable superhydrophobic surface. Cellulose 26:933–944

    Article  CAS  Google Scholar 

  117. Chen S, Song Y, Xu F (2018) Highly transparent and hazy cellulose nanopaper simultaneously with a self-cleaning superhydrophobic surface. ACS Sustain Chem Eng 6:5173–5181

    Article  CAS  Google Scholar 

  118. Baidya A, Ganayee MA, Ravindran SJ et al (2017) Organic solvent-free fabrication of durable and multifunctional superhydrophobic paper from waterborne fluorinated cellulose nanofiber building blocks. ACS Nano 11:11091–11099

    Article  CAS  Google Scholar 

  119. Gopakumar MH, Arumughan D, Pottathara V et al (2019) Robust superhydrophobic cellulose nanofiber aerogel for multifunctional environmental applications. Polymers 11:495

    Article  CAS  Google Scholar 

  120. Thorvaldsson A, Edvinsson P, Glantz A et al (2012) Superhydrophobic behaviour of plasma modified electrospun cellulose nanofiber-coated microfibers. Cellulose 19:1743–1748

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the National Natural Science Foundation of China (51603159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kiliona, K.P.S., Lwal, A.L.J., Tao, H., Lin, N. (2019). Surface Modification with Grafting Functional Molecules on Nanopolysaccharides . In: Lin, N., Tang, J., Dufresne, A., Tam, M. (eds) Advanced Functional Materials from Nanopolysaccharides. Springer Series in Biomaterials Science and Engineering, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-15-0913-1_2

Download citation

Publish with us

Policies and ethics