Skip to main content

Preparation and Properties of Nanopolysaccharides

  • Chapter
  • First Online:
Advanced Functional Materials from Nanopolysaccharides

Abstract

With the raising environmental awareness of the society, the interest in exploiting nanomaterials from renewable resources is rapidly increasing. Renewable nanotechnology not only features the outstanding properties of common synthetic nanomaterials, but also combines renewability, biodegradability and biocompatibility. These past two decades have seen the emergence of so-called nanopolysaccharides, namely nanoscale particles isolated and/or produced from renewable and abundant materials such as cellulose, chitin and starch. These particles are paving the way for the design of high-performance tailored materials, which can address the current environmental and sustainability concerns of our society. Their potential in replacing plastics from petroleum-based polymers is especially the key driver behind this global and raising research effort. This chapter introduces the different preparation routes and main properties of nanopolysaccharides from cellulose, chitin and starch; three of the most abundant biopolymers available and exploited today. This chapter suggests as well potential applications and usages for these nanoparticles, as a preamble of the following next chapters, which will illustrate much more in details how these nanoparticles can change our society of tomorrow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klemm D, Heublein B, Fink H-P et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393

    Article  CAS  Google Scholar 

  2. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 17:2311–2320

    CAS  Google Scholar 

  3. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  Google Scholar 

  4. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  5. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  6. Moon RJ, Schueneman GT, Simonsen J (2016) Overview of cellulose nanomaterials, their capabilities and applications. JOM 1–12

    Google Scholar 

  7. Li F, Mascheroni E, Piergiovanni L (2015) The potential of nanocellulose in the packaging field: a review. Packag Technol Sci 28:475–508

    Article  CAS  Google Scholar 

  8. Dugan JM, Gough JE, Eichhorn SJ (2013) Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine 8:287–298

    Article  CAS  Google Scholar 

  9. Brodin FW, Gregersen ØW, Syverud K (2014) Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material—a review. Nord Pulp Pap Res J 29:156–166

    Article  CAS  Google Scholar 

  10. Hoeng F, Denneulin A, Bras J (2016) Use of nanocellulose in printed electronics: a review. Nanoscale 8:13131–13154

    Article  CAS  Google Scholar 

  11. Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci, Part B: Polym Phys 52:791–806

    Article  CAS  Google Scholar 

  12. ISO (2017) Nanotechnologies—standard terms and their definition for cellulose nanomaterial ISO/TS 20477:2017. In: International organization for standardization ISOTC/ 229 nanotechnologies

    Google Scholar 

  13. García A, Gandini A, Labidi J et al (2016) Industrial and crop wastes: a new source for nanocellulose biorefinery. Ind Crops Prod 93:26–38

    Article  CAS  Google Scholar 

  14. Jonoobi M, Oladi R, Davoudpour Y et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969

    Article  CAS  Google Scholar 

  15. Jozala AF, de Lencastre-Novaes LC, Lopes AM et al (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100:2063–2072

    Article  CAS  Google Scholar 

  16. Favier V, Chanzy H, Cavaillé JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    Article  CAS  Google Scholar 

  17. Brown EE, Laborie M-PG (2007) Bioengineering bacterial cellulose/poly(ethylene oxide) nanocomposites. Biomacromol 8:3074–3081

    Article  CAS  Google Scholar 

  18. Hirose E (2009) Ascidian tunic cells: morphology and functional diversity of free cells outside the epidermis. Invertebr Biol 128:83–96

    Article  Google Scholar 

  19. Zhao Y, Li J (2014) Excellent chemical and material cellulose from tunicates: diversity in cellulose production yield and chemical and morphological structures from different tunicate species. Cellulose 21:3427–3441

    Article  CAS  Google Scholar 

  20. Seo YB, Lee YW, Lee CH, You HC (2010) Red algae and their use in papermaking. Bioresour Technol 101:2549–2553

    Article  CAS  Google Scholar 

  21. Krystynowicz A, Czaja W, Wiktorowska-Jezierska A et al (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29:189–195

    Article  CAS  Google Scholar 

  22. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10:2571–2576

    Article  CAS  Google Scholar 

  23. Kose R, Mitani I, Kasai W, Kondo T (2011) “Nanocellulose” as a single nanofiber prepared from pellicle secreted by gluconacetobacter xylinus using aqueous counter collision. Biomacromol 12:716–720

    Article  CAS  Google Scholar 

  24. Imai T, Sugiyama J (1998) Nanodomains of I α and I β cellulose in algal microfibrils. Macromolecules 31:6275–6279

    Article  CAS  Google Scholar 

  25. Kargarzadeh Hanieh (2017) Handbook of nanocellulose and cellulose nanocomposites. Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, Germany

    Book  Google Scholar 

  26. Dufresne A (2017) Nanocellulose: from nature to high performance tailored material. In: Nanocellulose. De Gruyter, Berlin, Boston

    Chapter  Google Scholar 

  27. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  28. Rånby BG, Banderet A, Sillén LG (1949) Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand 3:649–650

    Article  Google Scholar 

  29. Lu Q, Lin W, Tang L et al (2014) A mechanochemical approach to manufacturing bamboo cellulose nanocrystals. J Mater Sci 50:611–619

    Article  CAS  Google Scholar 

  30. Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A Physicochem Eng Asp 142:75–82

    Article  CAS  Google Scholar 

  31. Camarero Espinosa S, Kuhnt T, Foster EJ et al (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromol 14:1223–1230

    Article  CAS  Google Scholar 

  32. Lee SY, Mohan DJ, Kang IA et al (2009) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers Polym 10:77–82

    Article  CAS  Google Scholar 

  33. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27

    Article  CAS  Google Scholar 

  34. Fleming K, Gray D, Prasannan S et al (2000) Cellulose crystallites: a new and robust liquid crystalline medium for the measurement of residual dipolar couplings. J Am Chem Soc 122:5224–5225

    Article  CAS  Google Scholar 

  35. Habibi Y, Goffin A-L, Schiltz N et al (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002–5010

    Article  CAS  Google Scholar 

  36. Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromol 6:3160–3165

    Article  CAS  Google Scholar 

  37. Saïd Azizi Samir MA, Alloin F, Paillet M et al (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316

    Article  CAS  Google Scholar 

  38. Anglès MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. Struct Anal Macromol 33:8344–8353

    Article  Google Scholar 

  39. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromol 10:425–432

    Article  CAS  Google Scholar 

  40. Hassan ML, Hassan EA, Oksman KN (2011) Effect of pretreatment of bagasse fibers on the properties of chitosan/microfibrillated cellulose nanocomposites. J Mater Sci 46:1732–1740

    Article  CAS  Google Scholar 

  41. Saito T, Nishiyama Y, Putaux J-L et al (2006) Homogeneous suspensions of individualized microfibrils from tempo-catalyzed oxidation of native cellulose. Biomacromol 7:1687–1691

    Article  CAS  Google Scholar 

  42. Agoda-Tandjawa G, Durand S, Berot S et al (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80:677–686

    Article  CAS  Google Scholar 

  43. Lavoine N, Desloges I, Dufresne A et al (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  Google Scholar 

  44. Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180

    Article  CAS  Google Scholar 

  45. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054

    Article  CAS  Google Scholar 

  46. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L et al (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65

    Article  CAS  Google Scholar 

  47. Dong S, Bortner MJ, Roman M (2016) Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: a central composite design study. Ind Crops Prod 93:76–87

    Article  CAS  Google Scholar 

  48. Bouchard J, Méthot M, Fraschini C et al (2016) Effect of oligosaccharide deposition on the surface of cellulose nanocrystals as a function of acid hydrolysis temperature. Cellulose 23:3555–3567

    Article  CAS  Google Scholar 

  49. Fang W, Arola S, Malho J-M et al (2016) Noncovalent dispersion and functionalization of cellulose nanocrystals with proteins and polysaccharides. Biomacromol 17:1458–1465

    Article  CAS  Google Scholar 

  50. Man Z, Muhammad N, Sarwono A et al (2011) Preparation of cellulose nanocrystals using an ionic liquid. J Polym Environ 19:726–731

    Article  CAS  Google Scholar 

  51. Leung ACW, Hrapovic S, Lam E et al (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305

    Article  CAS  Google Scholar 

  52. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37

    Google Scholar 

  53. Herrick FW, Casebier RL, Hamilton JK et al (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci: Appl Polym Symp 37:797

    CAS  Google Scholar 

  54. Iwamoto S, Nakagaito AN, Yano H et al (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A Mater Sci Process 81:1109–1112

    Article  CAS  Google Scholar 

  55. Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A Mater Sci Process 78:547–552

    Article  CAS  Google Scholar 

  56. Spence KL, Venditti RA, Rojas OJ et al (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111

    Article  CAS  Google Scholar 

  57. Qing Y, Sabo R, Zhu JY et al (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97:226–234

    Article  CAS  Google Scholar 

  58. Kriechbaum K, Munier P, Apostolopoulou-Kalkavoura V et al (2018) Analysis of the porous architecture and properties of anisotropic nanocellulose foams: a novel approach to assess the quality of cellulose nanofibrils (CNFs). ACS Sustain Chem Eng

    Google Scholar 

  59. Hu C, Zhao Y, Li K et al (2015) Optimizing cellulose fibrillation for the production of cellulose nanofibrils by a disk grinder. Holzforschung 69:993–1000

    Article  CAS  Google Scholar 

  60. Kondo T, Kose R, Naito H et al (2014) Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers. Carbohydr Polym 112:284–290

    Article  CAS  Google Scholar 

  61. Kose R, Kondo T (2011) Favorable 3D-network formation of chitin nanofibers dispersed in water prepared using aqueous counter collision. FIBER 67:91–95

    Article  CAS  Google Scholar 

  62. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107

    Article  CAS  Google Scholar 

  63. Sacui IA, Nieuwendaal RC, Burnett DJ et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138

    Article  CAS  Google Scholar 

  64. Van Hai L, Son HN, Seo YB (2015) Physical and bio-composite properties of nanocrystalline cellulose from wood, cotton linters, cattail, and red algae. Cellulose 22:1789–1798

    Article  CAS  Google Scholar 

  65. Luzi F, Fortunati E, Puglia D et al (2014) Optimized extraction of cellulose nanocrystals from pristine and carded hemp fibres. Ind Crops Prod 56:175–186

    Article  CAS  Google Scholar 

  66. Yu H, Qin Z, Liang B et al (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938–3944

    Article  CAS  Google Scholar 

  67. Lu P, Hsieh Y-L (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573

    Article  CAS  Google Scholar 

  68. Agustin MB, Ahmmad B, Alonzo SMM et al (2014) Bioplastic based on starch and cellulose nanocrystals from rice straw. J Reinf Plast Compos 33:2205–2213

    Article  CAS  Google Scholar 

  69. Garcia de Rodriguez NL, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270

    Article  CAS  Google Scholar 

  70. Tejado A, Alam MN, Antal M et al (2012) Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19:831–842

    Article  CAS  Google Scholar 

  71. Naderi A, Lindström T, Sundström J (2015) Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose? Cellulose 22:1147–1157

    Article  CAS  Google Scholar 

  72. Henriksson M, Henriksson G, Berglund LA et al (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441

    Article  CAS  Google Scholar 

  73. Nechyporchuk O, Pignon F, Belgacem MN (2015) Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J Mater Sci 50:531–541

    Article  CAS  Google Scholar 

  74. Bäckström M, Bolivar S, Paltakari J (2012) Effect of ionic form on fibrillation and the development of the fibre network strength during the refining of the kraft pulps. O Pap 73:57–65

    Google Scholar 

  75. Saito T, Kimura S, Nishiyama Y et al (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491

    Article  CAS  Google Scholar 

  76. Saito T, Hirota M, Tamura N et al (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromol 10:1992–1996

    Article  CAS  Google Scholar 

  77. Aulin C, Ahola S, Josefsson P et al (2009) Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water. Langmuir 25:7675–7685

    Article  CAS  Google Scholar 

  78. Taipale T, Österberg M, Nykänen A et al (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020

    Article  CAS  Google Scholar 

  79. Eyholzer C, Borges de Couraça A, Duc F et al (2011) Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacement of the nucleus pulposus. Biomacromol 12:1419–1427

    Article  CAS  Google Scholar 

  80. Ghanadpour M, Carosio F, Larsson PT et al (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromol 16:3399–3410

    Article  CAS  Google Scholar 

  81. Larsson PA, Berglund LA, Wågberg L (2014) Ductile all-cellulose nanocomposite films fabricated from core–shell structured cellulose nanofibrils. Biomacromol 15:2218–2223

    Article  CAS  Google Scholar 

  82. Liimatainen H, Visanko M, Sirviö JA et al (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation. Biomacromol 13:1592–1597

    Article  CAS  Google Scholar 

  83. Miller J (2019) Nanocellulose: packaging applications and markets. RISI

    Google Scholar 

  84. Foster EJ, Moon RJ, Agarwal UP et al (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679

    Article  CAS  Google Scholar 

  85. Cranston ED, Gray DG (2006) Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromol 7:2522–2530

    Article  CAS  Google Scholar 

  86. Bhattacharjee S (2016) DLS and zeta potential—what they are and what they are not? J Control Release 235:337–351

    Article  CAS  Google Scholar 

  87. Revol J-F, Bradford H, Giasson J et al (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    Article  CAS  Google Scholar 

  88. Isogai A, Saito T, Shimizu M et al (2016) Fast and robust nanocellulose width estimation using turbidimetry. Macromol Rapid Commun 37:1581–1586

    Article  CAS  Google Scholar 

  89. Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater Sci Process 89:461–466

    Article  CAS  Google Scholar 

  90. Smith DK, Bampton RF, Alexander WJ (1963) Use of new solvents for evaluating chemical cellulose for the viscose process. Ind Eng Chem Process Des Dev 2:57–62

    Article  CAS  Google Scholar 

  91. Shinoda R, Saito T, Okita Y et al (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromol 13:842–849

    Article  CAS  Google Scholar 

  92. Battista OA (1950) Hydrolysis and crystallization of cellulose. Ind Eng Chem 42:502–507

    Article  CAS  Google Scholar 

  93. Håkansson H, Ahlgren P (2005) Acid hydrolysis of some industrial pulps: Effect of hydrolysis conditions and raw material. Cellulose 12:177–183

    Article  CAS  Google Scholar 

  94. Thomas B, Raj MC, Athira KK et al (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118:11575–11625

    Article  CAS  Google Scholar 

  95. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  96. Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206:1568–1575

    Article  CAS  Google Scholar 

  97. Segal L, Creely JJ, Martin AE et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  98. Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10

    Article  CAS  Google Scholar 

  99. Yamamoto H, Horii F, Odani H (1989) Structural changes of native cellulose crystals induced by annealing in aqueous alkaline and acidic solutions at high temperatures. Macromolecules 22:4130–4132

    Article  CAS  Google Scholar 

  100. Revol JF, Godbout L, Dong XM et al (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16:127–134

    Article  CAS  Google Scholar 

  101. Reid MS, Villalobos M, Cranston ED (2017) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33:1583–1598

    Article  CAS  Google Scholar 

  102. Frka-Petesic B, Sugiyama J, Kimura S et al (2015) Negative diamagnetic anisotropy and birefringence of cellulose nanocrystals. Macromolecules 48:8844–8857

    Article  CAS  Google Scholar 

  103. Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393

    Article  CAS  Google Scholar 

  104. Uetani K, Yano H (2012) Zeta potential time dependence reveals the swelling dynamics of wood cellulose nanofibrils. Langmuir 28:818–827

    Article  CAS  Google Scholar 

  105. Pääkkö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941

    Article  CAS  Google Scholar 

  106. Nechyporchuk O, Belgacem MN, Pignon F (2016) Current progress in rheology of cellulose nanofibril suspensions. Biomacromol 73:2311–2320

    Article  CAS  Google Scholar 

  107. Macosko CW (1994) Rheology: principles, measurements, and applications. AIChE J 41:10

    Google Scholar 

  108. Boluk Y, Lahiji R, Zhao L et al (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf A Physicochem Eng Asp 377:297–303

    Article  CAS  Google Scholar 

  109. Bröckel U, Meier W, Wagner G et al (2013) Product design and engineering: formulation of gels and pastes. Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim

    Book  Google Scholar 

  110. Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromol 13:1486–1494

    Article  CAS  Google Scholar 

  111. Peng Y, Gardner DJ, Han Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102

    Article  CAS  Google Scholar 

  112. Missoum K, Bras J, Belgacem MN (2012) Water redispersible dried nanofibrillated cellulose by adding sodium chloride. Biomacromol 13:4118–4125

    Article  CAS  Google Scholar 

  113. Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599

    Article  CAS  Google Scholar 

  114. Hanif Z, Jeon H, Tran TH et al (2017) Butanol-mediated oven-drying of nanocellulose with enhanced dehydration rate and aqueous re-dispersion. J Polym Res 25:191

    Article  CAS  Google Scholar 

  115. Jiang F, Hsieh Y-L (2014) Assembling and redispersibility of rice straw nanocellulose: effect of tert-butanol. ACS Appl Mater Interfaces 6:20075–20084

    Article  CAS  Google Scholar 

  116. Eyholzer C, Bordeanu N, Lopez-Suevos F et al (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30

    Article  CAS  Google Scholar 

  117. Fairman E (2014) Avoiding aggregation during drying and rehydration of nanocellulose. University of Maine

    Google Scholar 

  118. Jongaroontaprangsee S, Chiewchan N, Devahastin S (2018) Production of nanofibrillated cellulose with superior water redispersibility from lime residues via a chemical-free process. Carbohydr Polym 193:249–258

    Article  CAS  Google Scholar 

  119. Velásquez-Cock J, Gómez HBE, Posada P et al (2018) Poly (vinyl alcohol) as a capping agent in oven dried cellulose nanofibrils. Carbohydr Polym 179:118–125

    Article  CAS  Google Scholar 

  120. Nie S, Zhang K, Lin X et al (2018) Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils. Carbohydr Polym 181:1136–1142

    Article  CAS  Google Scholar 

  121. Syverud K, Stenius P (2008) Strength and barrier properties of MFC films. Cellulose 16:75–85

    Article  CAS  Google Scholar 

  122. Nogi M, Iwamoto S, Nakagaito AN et al (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598

    Article  CAS  Google Scholar 

  123. Cranston ED, Gray DG (2009) Model cellulose I surfaces: a review. In: Model cellulosic surfaces. American Chemical Society, pp 3–75

    Google Scholar 

  124. Habibi Y, Foulon L, Aguié-Béghin V et al (2007) Langmuir-Blodgett films of cellulose nanocrystals: preparation and characterization. J Colloid Interface Sci 316:388–397

    Article  CAS  Google Scholar 

  125. Ahola S, Salmi J, Johansson L-S et al (2008) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromol 9:1273–1282

    Article  CAS  Google Scholar 

  126. Kumar V, Bollström R, Yang A et al (2014) Comparison of nano- and microfibrillated cellulose films. Cellulose 21:3443–3456

    Article  CAS  Google Scholar 

  127. Fujisawa S, Okita Y, Fukuzumi H et al (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583

    Article  CAS  Google Scholar 

  128. Österberg M, Vartiainen J, Lucenius J et al (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5:4640–4647

    Article  CAS  Google Scholar 

  129. Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48:11211–11219

    Article  CAS  Google Scholar 

  130. Jang J-H, Lee S-H, Endo T et al (2013) Characteristics of microfibrillated cellulosic fibers and paper sheets from Korean white pine. Wood Sci Technol 47:925–937

    Article  CAS  Google Scholar 

  131. Benítez AJ, Torres-Rendon J, Poutanen M et al (2013) Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Biomacromol 14:4497–4506

    Article  CAS  Google Scholar 

  132. Fukuzumi H, Saito T, Iwata T et al (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromol 10:162–165

    Article  CAS  Google Scholar 

  133. Gray DG (2016) Recent advances in chiral nematic structure and iridescent color of cellulose nanocrystal films. Nanomaterials 6:213

    Article  CAS  Google Scholar 

  134. Beck S, Bouchard J, Berry R (2011) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromol 12:167–172

    Article  CAS  Google Scholar 

  135. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227

    Article  CAS  Google Scholar 

  136. Nair SS, Zhu J, Deng Y et al (2014) High performance green barriers based on nanocellulose. Sustain Chem Process 2:1–7

    Article  CAS  Google Scholar 

  137. Aulin C (2009) Novel oil resistant cellulosic materials. KTH Royal Institute

    Google Scholar 

  138. Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials (Basel) 6:1745–1766

    Article  CAS  Google Scholar 

  139. Dai L, Long Z, Chen J et al (2017) Robust guar gum/cellulose nanofibrils multilayer films with good barrier properties. ACS Appl Mater Interfaces 9:5477–5485

    Article  CAS  Google Scholar 

  140. Liu A, Walther A, Ikkala O et al (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromol 12:633–641

    Article  CAS  Google Scholar 

  141. Spence KL, Venditti RA, Rojas OJ et al (2011) Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. Bioresour 6(4)

    Google Scholar 

  142. Raabe D, Romano P, Sachs C et al (2005) Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue. J Cryst Growth 283:1–7

    Article  CAS  Google Scholar 

  143. Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633

    Article  CAS  Google Scholar 

  144. Gopalan Nair K, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites. Processing and swelling behavior. Biomacromolecules 4:657–665

    Article  CAS  Google Scholar 

  145. Hariraksapitak P, Supaphol P (2010) Preparation and properties of α-chitin-whisker-reinforced hyaluronan–gelatin nanocomposite scaffolds. J Appl Polym Sci 117:3406–3418

    CAS  Google Scholar 

  146. Goodrich JD, Winter WT (2007) α-Chitin nanocrystals prepared from shrimp shells and their specific surface area measurement. Biomacromol 8:252–257

    Article  CAS  Google Scholar 

  147. Larbi F, García A, del Valle LJ et al (2018) Comparison of nanocrystals and nanofibers produced from shrimp shell α-chitin: from energy production to material cytotoxicity and pickering emulsion properties. Carbohydr Polym 196:385–397

    Article  CAS  Google Scholar 

  148. Morin A, Dufresne A (2002) Nanocomposites of chitin whiskers from Riftia tubes and poly (caprolactone). Macromolecules 35:2190–2199

    Article  CAS  Google Scholar 

  149. Salaberria AM, Diaz RH, Labidi J et al (2015) Role of chitin nanocrystals and nanofibers on physical, mechanical and functional properties in thermoplastic starch films. Food Hydrocoll 46:93–102

    Article  CAS  Google Scholar 

  150. Jung H-S, Kim MH, Park WH (2019) Preparation and structural investigation of novel β-chitin nanocrystals from cuttlefish bone. ACS Biomater Sci Eng 5:1744–1752

    Article  CAS  Google Scholar 

  151. Salaberria AM, Labidi J, Fernandes SCM (2015) Different routes to turn chitin into stunning nano-objects. Eur Polym J 68:503–515

    Article  CAS  Google Scholar 

  152. Oun AA, Rhim J-W (2018) Effect of isolation methods of chitin nanocrystals on the properties of chitin-silver hybrid nanoparticles. Carbohydr Polym 197:349–358

    Article  CAS  Google Scholar 

  153. Fan Y, Saito T, Isogai A (2008) Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromol 9:192–198

    Article  CAS  Google Scholar 

  154. Fan Y, Saito T, Isogai A (2010) Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization. Carbohydr Polym 79:1046–1051

    Article  CAS  Google Scholar 

  155. Kadokawa J, Takegawa A, Mine S et al (2011) Preparation of chitin nanowhiskers using an ionic liquid and their composite materials with poly(vinyl alcohol). Carbohydr Polym 84:1408–1412

    Article  CAS  Google Scholar 

  156. Mincea M, Negrulescu A, Ostafe V (2012) Preparation, modification, and applications of chitin nanowhiskers: a review. Rev Adv Mater Sci 30:225–242

    CAS  Google Scholar 

  157. Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294

    Article  CAS  Google Scholar 

  158. Ang-atikarnkul P, Watthanaphanit A, Rujiravanit R (2014) Fabrication of cellulose nanofiber/chitin whisker/silk sericin bionanocomposite sponges and characterizations of their physical and biological properties. Compos Sci Technol 96:88–96

    Article  CAS  Google Scholar 

  159. Sriupayo J, Supaphol P, Blackwell J et al (2005) Preparation and characterization of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite films with or without heat treatment. Polymer (Guildf) 46:5637–5644

    Article  CAS  Google Scholar 

  160. Ifuku S, Nogi M, Abe K et al (2009) Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Biomacromol 10:1584–1588

    Article  CAS  Google Scholar 

  161. Ifuku S, Nogi M, Yoshioka M et al (2010) Fibrillation of dried chitin into 10–20 nm nanofibers by a simple grinding method under acidic conditions. Carbohydr Polym 81:134–139

    Article  CAS  Google Scholar 

  162. Fan Y, Fukuzumi H, Saito T et al (2012) Comparative characterization of aqueous dispersions and cast films of different chitin nanowhiskers/nanofibers. Int J Biol Macromol 50:69–76

    Article  CAS  Google Scholar 

  163. Mushi NE, Butchosa N, Salajkova M et al (2014) Nanostructured membranes based on native chitin nanofibers prepared by mild process. Carbohydr Polym 112:255–263

    Article  CAS  Google Scholar 

  164. Salaberria AM, Fernandes SCM, Diaz RH et al (2015) Processing of α-chitin nanofibers by dynamic high pressure homogenization: characterization and antifungal activity against A. niger. Carbohydr Polym 116:286–291

    Article  CAS  Google Scholar 

  165. Lu Y, Sun Q, She X et al (2013) Fabrication and characterisation of α-chitin nanofibers and highly transparent chitin films by pulsed ultrasonication. Carbohydr Polym 98:1497–1504

    Article  CAS  Google Scholar 

  166. Fan Y, Saito T, Isogai A (2009) TEMPO-mediated oxidation of β-chitin to prepare individual nanofibrils. Carbohydr Polym 77:832–838

    Article  CAS  Google Scholar 

  167. Narkevicius A, Steiner LM, Parker RM et al (2019) Controlling the self-assembly behavior of aqueous chitin nanocrystal suspensions. Biomacromol 20:2830–2838

    Article  CAS  Google Scholar 

  168. Huang W (2018) Chitin nanopapers, chap 6. In: Huang WBT-N (ed) Micro and nano technologies. William Andrew Publishing, pp 175–200

    Google Scholar 

  169. Watthanaphanit A, Supaphol P, Tamura H et al (2010) Wet-spun alginate/chitosan whiskers nanocomposite fibers: Preparation, characterization and release characteristic of the whiskers. Carbohydr Polym 79:738–746

    Article  CAS  Google Scholar 

  170. Liu D, Wu Q, Chang PR et al (2011) Self-assembled liquid crystal film from mechanically defibrillated chitosan nanofibers. Carbohydr Polym 84:686–689

    Article  CAS  Google Scholar 

  171. Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res 4:411–427

    CAS  Google Scholar 

  172. Ramezani Z, Zarei M, Raminnejad N (2015) Comparing the effectiveness of chitosan and nanochitosan coatings on the quality of refrigerated silver carp fillets. Food Control 51:43–48

    Article  CAS  Google Scholar 

  173. Qi L, Xu Z, Jiang X et al (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700

    Article  CAS  Google Scholar 

  174. Sadeghi AMM, Dorkoosh FA, Avadi MR et al (2008) Preparation, characterization and antibacterial activities of chitosan, N-trimethyl chitosan (TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods. Int J Pharm 355:299–306

    Article  CAS  Google Scholar 

  175. Yang H-C, Wang W-H, Huang K-S et al (2010) Preparation and application of nanochitosan to finishing treatment with anti-microbial and anti-shrinking properties. Carbohydr Polym 79:176–179

    Article  CAS  Google Scholar 

  176. Jin J, Lee D, Im H-G et al (2016) Chitin nanofiber transparent paper for flexible green electronics. Adv Mater 28:5169–5175

    Article  CAS  Google Scholar 

  177. Olivera S, Muralidhara HB, Venkatesh K et al (2016) Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: a review. Carbohydr Polym 153:600–618

    Article  CAS  Google Scholar 

  178. Pérez S, Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch–Stärke 62:389–420

    Article  CAS  Google Scholar 

  179. Altuna L, Herrera ML, Foresti ML (2018) Synthesis and characterization of octenyl succinic anhydride modified starches for food applications. A review of recent literature. Food Hydrocoll 80:97–110

    Article  CAS  Google Scholar 

  180. Wang S, Li C, Copeland L et al (2015) Starch retrogradation: a comprehensive review. Compr Rev Food Sci Food Saf 14:568–585

    Article  CAS  Google Scholar 

  181. Gao W, Lin X, Lin X et al (2011) Preparation of nano-sized flake carboxymethyl cassava starch under ultrasonic irradiation. Carbohydr Polym 84:1413–1418

    Article  CAS  Google Scholar 

  182. Marinich JA, Ferrero C, Jiménez-Castellanos MR (2009) Graft copolymers of ethyl methacrylate on waxy maize starch derivatives as novel excipients for matrix tablets: physicochemical and technological characterisation. Eur J Pharm Biopharm 72:138–147

    Article  CAS  Google Scholar 

  183. Le Corre D, Angellier-Coussy H (2014) Preparation and application of starch nanoparticles for nanocomposites: a review. React Funct Polym 85:97–120

    Article  CAS  Google Scholar 

  184. Zia F, Zia KM, Zuber M et al (2015) Starch based polyurethanes: a critical review updating recent literature. Carbohydr Polym 134:784–798

    Article  CAS  Google Scholar 

  185. Sajilata MG, Singhal RS, Kulkarni PR (2006) Resistant starch–a review. Compr Rev Food Sci Food Saf 5:1–17

    Article  CAS  Google Scholar 

  186. Valodkar M, Thakore S (2010) Isocyanate crosslinked reactive starch nanoparticles for thermo-responsive conducting applications. Carbohydr Res 345:2354–2360

    Article  CAS  Google Scholar 

  187. Gong B, Liu W, Tan H et al (2016) Understanding shape and morphology of unusual tubular starch nanocrystals. Carbohydr Polym 151:666–675

    Article  CAS  Google Scholar 

  188. Zheng H, Ai F, Chang PR et al (2009) Structure and properties of starch nanocrystal-reinforced soy protein plastics. Polym Compos 30:474–480

    Article  CAS  Google Scholar 

  189. Qin Y, Liu C, Jiang S et al (2016) Characterization of starch nanoparticles prepared by nanoprecipitation: influence of amylose content and starch type. Ind Crops Prod 87:182–190

    Article  CAS  Google Scholar 

  190. Kim H-Y, Park SS, Lim S-T (2015) Preparation, characterization and utilization of starch nanoparticles. Colloids Surf B Biointerfaces 126:607–620

    Article  CAS  Google Scholar 

  191. Nägeli W (1874) Beiträge zur näheren kenntniss der stärkegruppe. Justus Liebigs Ann Chem 173:218–227

    Article  Google Scholar 

  192. Lintner CJ (1886) Studien uber diastase. J für Prakt Chemie 34:378–386

    Article  Google Scholar 

  193. Dufresne A, Cavaillé J-Y, Helbert W (1996) New nanocomposite materials: microcrystalline starch reinforced thermoplastic. Macromolecules 29:7624–7626

    Article  CAS  Google Scholar 

  194. Putaux J-L, Molina-Boisseau S, Momaur T et al (2003) Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromol 4:1198–1202

    Article  CAS  Google Scholar 

  195. Wang S, Yu J, Jin F, Yu J (2008) The new insight on ultrastructure of C-type starch granules revealed by acid hydrolysis. Int J Biol Macromol 43:216–220

    Article  CAS  Google Scholar 

  196. Angellier H, Choisnard L, Molina-Boisseau S et al (2004) Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology. Biomacromol 5:1545–1551

    Article  CAS  Google Scholar 

  197. Saeng-on J, Aht-Ong D (2017) Production of starch nanocrystals from agricultural materials using mild acid hydrolysis method: optimization and characterization. Polym Renew Resour 8:91–116

    Google Scholar 

  198. Romdhane A, Aurousseau M, Guillet A et al (2015) Cross flow microfiltration of starch nanocrystal suspensions. Can J Chem Eng 93:412–418

    Article  CAS  Google Scholar 

  199. Kim JH, Park DH, Kim J-Y (2017) Effect of heat-moisture treatment under mildly acidic condition on fragmentation of waxy maize starch granules into nanoparticles. Food Hydrocoll 63:59–66

    Article  CAS  Google Scholar 

  200. LeCorre D, Bras J, Dufresne A (2011) Influence of botanic origin and amylose content on the morphology of starch nanocrystals. J Nanoparticle Res 13:7193–7208

    Article  CAS  Google Scholar 

  201. Kim J-Y, Park D-J, Lim S-T (2008) Fragmentation of waxy rice starch granules by enzymatic hydrolysis. Cereal Chem 85:182–187

    Article  CAS  Google Scholar 

  202. Wei B, Cai C, Tian Y (2018) Nano-sized starch: preparations and applications BT—functional starch and applications in food. In: Jin Z (ed). Springer Singapore, Singapore, pp 147–176

    Google Scholar 

  203. Biais B, Le Bail P, Robert P et al (2006) Structural and stoichiometric studies of complexes between aroma compounds and amylose. Polymorphic transitions and quantification in amorphous and crystalline areas. Carbohydr Polym 66:306–315

    Article  CAS  Google Scholar 

  204. Rondeau-Mouro C, Le BP, Buléon A (2004) Structural investigation of amylose complexes with small ligands: inter- or intra-helical associations? Int J Biol Macromol 34:251–257

    Article  CAS  Google Scholar 

  205. Lay Ma UV, Floros JD, Ziegler GR (2011) Formation of inclusion complexes of starch with fatty acid esters of bioactive compounds. Carbohydr Polym 83:1869–1878

    Article  CAS  Google Scholar 

  206. Kong L, Ziegler GR (2014) Molecular encapsulation of ascorbyl palmitate in preformed V-type starch and amylose. Carbohydr Polym 111:256–263

    Article  CAS  Google Scholar 

  207. Le Bail P, Rondeau C, Buléon A (2005) Structural investigation of amylose complexes with small ligands: helical conformation, crystalline structure and thermostability. Int J Biol Macromol 35:1–7

    Article  CAS  Google Scholar 

  208. Kim J-Y, Lim S-T (2009) Preparation of nano-sized starch particles by complex formation with n-butanol. Carbohydr Polym 76:110–116

    Article  CAS  Google Scholar 

  209. Hao Y, Chen Y, Li Q et al (2019) Synthesis, characterization and hydrophobicity of esterified waxy potato starch nanocrystals. Ind Crops Prod 130:111–117

    Article  CAS  Google Scholar 

  210. Del Buono D, Luzi F, Benincasa P et al (2019) Extraction of nanostructured starch from purified granules of waxy and non-waxy barley cultivars. Ind Crops Prod 130:520–527

    Article  CAS  Google Scholar 

  211. Silva APM, Oliveira AV, Pontes SMA et al (2019) Mango kernel starch films as affected by starch nanocrystals and cellulose nanocrystals. Carbohydr Polym 211:209–216

    Article  CAS  Google Scholar 

  212. Sanchez de la Concha BB, Agama-Acevedo E, Nuñez-Santiago MC et al (2018) Acid hydrolysis of waxy starches with different granule size for nanocrystal production. J Cereal Sci 79:193–200

    Article  CAS  Google Scholar 

  213. Costa ÉK de C, de Souza CO, da Silva JBA et al (2017) Hydrolysis of part of cassava starch into nanocrystals leads to increased reinforcement of nanocomposite films. J Appl Polym Sci 134:45311

    Article  CAS  Google Scholar 

  214. Mukurumbira A, Mariano M, Dufresne A et al (2017) Microstructure, thermal properties and crystallinity of amadumbe starch nanocrystals. Int J Biol Macromol 102:241–247

    Article  CAS  Google Scholar 

  215. Bel Haaj S, Thielemans W, Magnin A et al (2016) Starch nanocrystals and starch nanoparticles from waxy maize as nanoreinforcement: a comparative study. Carbohydr Polym 143:310–317

    Article  CAS  Google Scholar 

  216. Namazi H, Dadkhah A (2010) Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids. Carbohydr Polym 79:731–737

    Article  CAS  Google Scholar 

  217. Chang PR, Ai F, Chen Y et al (2009) Effects of starch nanocrystal-graft-polycaprolactone on mechanical properties of waterborne polyurethane-based nanocomposites. J Appl Polym Sci 111:619–627

    Article  CAS  Google Scholar 

  218. Ma X, Jian R, Chang PR, Yu J (2008) Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromol 9:3314–3320

    Article  CAS  Google Scholar 

  219. Liu D, Wu Q, Chen H, Chang PR (2009) Transitional properties of starch colloid with particle size reduction from micro- to nanometer. J Colloid Interface Sci 339:117–124

    Article  CAS  Google Scholar 

  220. Tan Y, Xu K, Li L et al (2009) Fabrication of size-controlled starch-based nanospheres by nanoprecipitation. ACS Appl Mater Interfaces 1:956–959

    Article  CAS  Google Scholar 

  221. Mostafa K, Ameen H, Morsy M et al (2019) Production of high-performance textiles via pioneering strengthening approach using starch nanoparticles. J Ind Text 0:1–15

    Google Scholar 

  222. Antonietti M, Landfester K (2002) Polyreactions in miniemulsions. Prog Polym Sci 27:689–757

    Article  CAS  Google Scholar 

  223. Shabana S, Prasansha R, Kalinina I et al (2019) Ultrasound assisted acid hydrolyzed structure modification and loading of antioxidants on potato starch nanoparticles. Ultrason Sonochem 51:444–450

    Article  CAS  Google Scholar 

  224. de Oliveira NR, Fornaciari B, Mali S et al (2018) Acetylated starch-based nanoparticles: synthesis, characterization, and studies of interaction with antioxidants. Starch–Stärke 70:1700170

    Article  CAS  Google Scholar 

  225. Chang Y, Yan X, Wang Q et al (2017) High efficiency and low cost preparation of size controlled starch nanoparticles through ultrasonic treatment and precipitation. Food Chem 227:369–375

    Article  CAS  Google Scholar 

  226. Gong M, Li X, Xiong L et al (2016) Retrogradation property of starch nanoparticles prepared by pullulanase and recrystallization. Starch–Stärke 68:230–238

    Article  CAS  Google Scholar 

  227. Gonçalves PM, Noreña CPZ, da Silveira NP et al (2014) Characterization of starch nanoparticles obtained from Araucaria angustifolia seeds by acid hydrolysis and ultrasound. LWT Food Sci Technol 58:21–27

    Article  CAS  Google Scholar 

  228. Bel Haaj S, Magnin A, Pétrier C et al (2013) Starch nanoparticles formation via high power ultrasonication. Carbohydr Polym 92:1625–1632

    Article  CAS  Google Scholar 

  229. Song D, Thio YS, Deng Y (2011) Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohydr Polym 85:208–214

    Article  CAS  Google Scholar 

  230. Sun Q (2018) Starch Nanoparticles. In: Starch in food, structure, function and applications, 2nd edn, pp 691–745

    Chapter  Google Scholar 

  231. Giezen F, Jongboom R, Gotlieb K et al (2000) Process for producing biopolymer nanoparticles. US Patent 9011741, p. 17

    Google Scholar 

  232. Lai LS, Kokini JL (1991) Physicochemical changes and rheological properties of starch during extrusion (a review). Biotechnol Prog 7:251–266

    Article  CAS  Google Scholar 

  233. Patel CM, Chakraborty M, Murthy ZVP (2016) Fast and scalable preparation of starch nanoparticles by stirred media milling. Adv Powder Technol 27:1287–1294

    Article  CAS  Google Scholar 

  234. Minakawa AFK, Faria-Tischer PCS, Mali S (2019) Simple ultrasound method to obtain starch micro- and nanoparticles from cassava, corn and yam starches. Food Chem 283:11–18

    Article  CAS  Google Scholar 

  235. Wang Y, Hu Q, Li T et al (2018) Core–shell starch nanoparticles and their toughening of polylactide. Ind Eng Chem Res 57:13048–13054

    Article  CAS  Google Scholar 

  236. Sessini V, Raquez J-M, Kenny JM et al (2019) Melt-processing of bionanocomposites based on ethylene-co-vinyl acetate and starch nanocrystals. Carbohydr Polym 208:382–390

    Article  CAS  Google Scholar 

  237. Sun Q, Li G, Dai L et al (2014) Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation. Food Chem 162:223–228

    Article  CAS  Google Scholar 

  238. Jiping P, Shujun W, Jinglin Y et al (2007) Comparative studies on morphological and crystalline properties of B-type and C-type starches by acid hydrolysis. Food Chem 105:989–995

    Article  CAS  Google Scholar 

  239. Kaur J, Kaur G, Sharma S et al (2018) Cereal starch nanoparticles—a prospective food additive: a review. Crit Rev Food Sci Nutr 58:1097–1107

    Article  CAS  Google Scholar 

  240. Duan B, Sun P, Wang X, Yang C (2011) Preparation and properties of starch nanocrystals/carboxymethyl chitosan nanocomposite films. Starch–Stärke 63:528–535

    Article  CAS  Google Scholar 

  241. Godet MC, Bouchet B, Colonna P et al (1996) Crystalline amylose-fatty acid complexes: morphology and crystal thickness. J Food Sci 61:1196–1201

    Article  CAS  Google Scholar 

  242. Gelders GG, Duyck JP, Goesaert H et al (2005) Enzyme and acid resistance of amylose-lipid complexes differing in amylose chain length, lipid and complexation temperature. Carbohydr Polym 60:379–389

    Article  CAS  Google Scholar 

  243. Angellier H, Molina-Boisseau S, Dufresne A (2005) Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber. Macromolecules 38:9161–9170

    Article  CAS  Google Scholar 

  244. Wei B, Xu X, Jin Z et al (2014) Surface chemical compositions and dispersity of starch nanocrystals formed by sulfuric and hydrochloric acid hydrolysis. PLoS ONE 9:1–7

    Google Scholar 

  245. Amini AM, Razavi SMA (2016) A fast and efficient approach to prepare starch nanocrystals from normal corn starch. Food Hydrocoll 57:132–138

    Article  CAS  Google Scholar 

  246. Sun Q, Fan H, Xiong L (2014) Preparation and characterization of starch nanoparticles through ultrasonic-assisted oxidation methods. Carbohydr Polym 106:359–364

    Article  CAS  Google Scholar 

  247. Jain AK, Khar RK, Ahmed FJ et al (2008) Effective insulin delivery using starch nanoparticles as a potential trans-nasal mucoadhesive carrier. Eur J Pharm Biopharm 69:426–435

    Article  CAS  Google Scholar 

  248. Patil VV, Dandekar PP, Patravale VB et al (2010) Freeze drying: Potential for powdered nanoparticulate product. Dry Technol 28:624–635

    Article  CAS  Google Scholar 

  249. Shi A, Li D, Wang L, Adhikari B (2012) Rheological properties of suspensions containing cross-linked starch nanoparticles prepared by spray and vacuum freeze drying methods. Carbohydr Polym 90:1732–1738

    Article  CAS  Google Scholar 

  250. Shi A, Wang L, Li D, Adhikari B (2013) Suspensions of vacuum-freeze dried starch nanoparticles: influence of NaCl on their rheological properties. Carbohydr Polym 94:782–790

    Article  CAS  Google Scholar 

  251. Kümmerer K, Menz J, Schubert T et al (2011) Biodegradability of organic nanoparticles in the aqueous environment. Chemosphere 82:1387–1392

    Article  CAS  Google Scholar 

  252. Liu C, Ge S, Yang J et al (2016) Adsorption mechanism of polyphenols onto starch nanoparticles and enhanced antioxidant activity under adverse conditions. J Funct Foods 26:632–644

    Article  CAS  Google Scholar 

  253. Dandekar P, Jain R, Stauner T et al (2012) A hydrophobic starch polymer for nanoparticle-mediated delivery of docetaxel. Macromol Biosci 12:184–194

    Article  CAS  Google Scholar 

  254. Huang Y, Liu M, Gao C et al (2013) Ultra-small and innocuous cationic starch nanospheres: preparation, characterization and drug delivery study. Int J Biol Macromol 58:231–239

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Scientific and Technological Research Council of Turkey (Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, Project #1059B141800332) for financial support, and Dr. Saim Ateş from Kastamonu University, Faculty of Forestry, Department of Forest Industrial Engineering for his collaboration and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Lavoine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lavoine, N., Durmaz, E., Trovagunta, R. (2019). Preparation and Properties of Nanopolysaccharides. In: Lin, N., Tang, J., Dufresne, A., Tam, M. (eds) Advanced Functional Materials from Nanopolysaccharides. Springer Series in Biomaterials Science and Engineering, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-15-0913-1_1

Download citation

Publish with us

Policies and ethics