Skip to main content

Design of a Non-iterative First-Order Compensator for Type 1 Higher Order Systems

  • Conference paper
  • First Online:
Proceedings of the 2nd International Conference on Communication, Devices and Computing (ICCDC 2019)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 602))

Included in the following conference series:

Abstract

Most of the real-time systems used in control applications are of higher order. Implementation of the controller requires dynamic and intelligent tuning to achieve the desired time response in control applications. An attempt is made in this article to extend the use of a simple first-order non-iterative compensator used in a Brushless Direct Current (BLDC) drive-based position control system to type 1 higher order systems. The compensator is found to yield the desired frequency response specifications with lesser overshoot and settling time than those of the conventional lag and lead compensators for various type 1 higher order systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keel, H.L., Bhattacharya, S.P.: Robust parametric classical control design. IEEE Trans. Autom. Control 39(7), 1524–1530 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Norman, S.N.: Control Systems Engineering, 7th edn. Wiley, New Jersey (2015)

    Google Scholar 

  3. Lee, H.: A new phase-lead design method using the root locus diagrams. IEEE Trans. Autom. Control 50(11), 1887–1891 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ogata, K.: Modern Control Engineering, 5th edn. Pearson Education, London (2011)

    MATH  Google Scholar 

  5. Wang, Q.G., Ye, Z., Chieh Hang, C.: Tuning of phase-lead compensators for exact gain and phase margins. Automatica 42(2), 349–352 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Loh, A.P., Cai, X., Tan, W.W.: Auto-tuning of phase lead/lag compensators. Automatica 40(3), 423–429 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Teixeira, M.C.M., Assunção, E.: On lag controllers: design and implementation. IEEE Trans. Educ. 45(3), 285–288 (2002)

    Article  Google Scholar 

  8. Wang, F.Y.: The exact and unique solution for phase-lead and phase-lag compensation. IEEE Trans. Educ. 46(2), 258–262 (2003)

    Article  Google Scholar 

  9. Wang, D.J.: Synthesis of phase-lead/lag compensators with complete information on gain and phase margins. Automatica 45(4), 1026–1031 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yeung, K.S., Wong, K.W., Chen, K.: A non-trial-and-error method for lag-lead compensator design. IEEE Trans. Educ. 41(1), 76–80 (1998)

    Article  Google Scholar 

  11. Li, G., Tsang, K.M.: Concurrent relay-PID control for motor position servo systems. Int. J. Control Autom. Syst. 5(3), 234–242 (2007)

    ADS  Google Scholar 

  12. Chen, Y.C.Y.: Implementation of a lag-lead compensator for robots. In: 27th IEEE Conference on Decision and Control, pp. 174–179. Texas, USA (1988)

    Google Scholar 

  13. Shanmugasundram, R., Zakariah, M.K., Yadaiah, N.: Design and digital implementation of non-iterative controller for improved performance of typical BLDC servo systems. Int. J. Power Electron. 3(5), 510–526 (2011)

    Google Scholar 

  14. Ganesh, C., Jeba, S., Saranya, R., Geethu, S., Patnaik, S.K.: A non-iterative controller design for a BLDC drive system. In: 2009 International Conference on Advances in Recent Technologies in Communication and Computing, pp. 141–145. ARTCom 2009, Kottayam, India (2009)

    Google Scholar 

  15. Ganesh, C., Patnaik, S.K.: A simple first order compensator for brushless direct current drive based position control system. J. Vib. Control 21(4), 647–661 (2015)

    Article  Google Scholar 

  16. Haneef, H., Ganesh, C.: Investigations on the design aspects of first order controller for type 1 third order system. Int. J. Appl. Eng. Res. 10(10), 9438–9445 (2015)

    Google Scholar 

  17. Ayasun, S.: Stability analysis of time-delayed DC motor speed control system. Turk. J. Electr. Eng. Comput. Sci. 21(2), 381–393 (2013)

    Google Scholar 

  18. Pan, C.T., Fang, E.: A phase-locked-loop-assisted internal model adjustable-speed controller for BLDC motors. IEEE Trans. Industr. Electron. 55(9), 3415–3425 (2008)

    Article  Google Scholar 

  19. Singaravelan, A., Kowsalya, M.: Control of converter fed microgrid using fuzzy controller. In: 2013 International Conference on Energy Efficient Technologies for Sustainability, pp. 1179–1184. ICEETS 2013, Nagercoil, India (2013)

    Google Scholar 

  20. Ganesh, C., Patnaik, S.K.: Artificial neural network based proportional plus integral plus derivative controller for a brushless DC position control system. J. Vib. Control 18(14), 2164–2175 (2012)

    Article  Google Scholar 

  21. Shanmugasundram, R., Yadaiah, N., Ganesh, C., Poornaselvan, K.J.: Compensator design by pole-zero adjustment for a typical position control system. In: 2008 International Conference on Information and Automation for Sustainability ICIAFS 2008, pp. 19–24. Colombo, Srilanka (2008)

    Google Scholar 

  22. Vinodhini, R., Ganesh, C., Patnaik, S.K.: Genetic algorithm optimized on-line neuro-tuned robust position control of BLDC motor. In: 2012 IEEE Students’ Conference on Electrical, Electronics and Computer Science SCEECS 2012. Bhopal, India (2012)

    Google Scholar 

  23. Ganesh, C., Prabhu, M., Rajalakshmi, M., Sumathi, G., Bhola, V., Patnaik, S.K.: ANN based PID controlled brushless DC drive system. Int. J. Electr. Power Eng. 03(01), 45–48 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ganesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ganesh, C., Shanmugasundaram, R., Singaravelan, A. (2020). Design of a Non-iterative First-Order Compensator for Type 1 Higher Order Systems. In: Kundu, S., Acharya, U.S., De, C.K., Mukherjee, S. (eds) Proceedings of the 2nd International Conference on Communication, Devices and Computing. ICCDC 2019. Lecture Notes in Electrical Engineering, vol 602. Springer, Singapore. https://doi.org/10.1007/978-981-15-0829-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0829-5_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0828-8

  • Online ISBN: 978-981-15-0829-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics