Skip to main content

Implementing Attacks on the Approximate Greatest Common Divisor Problem

  • Conference paper
  • First Online:
Frontiers in Cyber Security (FCS 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1105))

Included in the following conference series:

  • 596 Accesses

Abstract

The security of many fully homomorphic encryption (FHE) schemes is guaranteed by the difficulty of the approximate greatest common divisor (AGCD) problem. Therefore, the study of AGCD problem is of great significance to the security of the fully homomorphic encryption. This paper surveys three kinds of attacks on the AGCD problem, i.e. exhaustive search attack, simultaneous Diophantine approximation (SDA) attack and the orthogonal lattice (OL) attack. We utilize the Number Theory Library (NTL) to implement the SDA attack and the optimized OL attack on the AGCD problem. Comparisons are performed based on the experimental results to illustrate that the exhaustive search attack can be easily defended just by increasing the size of ρ. And increasing the length of the public key is the most effective way to defend SDA attack and OL attack. Meanwhile, we concluded that the success rate of SDA attack and OL attack can be improved by increasing the dimension of lattice at the expense of a certain time efficiency. In addition, the analysis and experiments show that the fully homomorphic computing efficiency of FHE scheme can’t be improved by simply increasing the private key without appropriately increasing the size of public key. Otherwise, the FHE scheme is vulnerable to OL and SDA attack. Besides, experimental results show that optimized OL attack performs better than both classical OL attack and SDA attack in terms of attack success rate and the time efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gentry, C.: Fully homomorphic encryption using hidden ideal lattice. In: Proceedings of the 41st Annual ACM Symposium on Symposium on Theory of Computing-STOC 2009, pp. 169–178. ACM (2009)

    Google Scholar 

  2. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_2

    Chapter  Google Scholar 

  3. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Foundations of Computer Science (FOCS). 2011 IEEE 52nd Annual Symposium on IEEE, 97–106 (2011)

    Google Scholar 

  4. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Nguyen, Phong Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_25

    Chapter  MATH  Google Scholar 

  5. Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_22

    Chapter  Google Scholar 

  6. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryption over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_28

    Chapter  Google Scholar 

  7. Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus switching for fully homomorphic encryption over the integers. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_27

    Chapter  Google Scholar 

  8. Cheon, J.H., et al.: Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen, Phong Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_20

    Chapter  Google Scholar 

  9. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Ring switching in BGV-style homomorphic encryption. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 19–37. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_2

    Chapter  Google Scholar 

  10. Gentry, C., Halevi, S.: Implementing Gentry’s fully-homomorphic encryption scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_9

    Chapter  Google Scholar 

  11. Gentry, C., Halevi, S., Smart, Nigel P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_28

    Chapter  Google Scholar 

  12. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)

    Article  MathSciNet  Google Scholar 

  13. Schnorr, C.-P., Euchner, M.: Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994)

    Article  MathSciNet  Google Scholar 

  14. Schnorr, C.P., Hörner, H.H.: Attacking the chor-rivest cryptosystem by improved lattice reduction. In: Guillou, Louis C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 1–12. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-49264-X_1

    Chapter  Google Scholar 

  15. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_3

    Chapter  Google Scholar 

  16. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_1

    Chapter  Google Scholar 

  17. Novocin, A., Stehl´e, D., Villard, G.: An LLL-reduction algorithm with quasi-linear time complexity: extended abstract. In: Proceedings of the Fortythird Annual ACM Symposium on Theory of Computing, STOC 2011, pp. 403–412. ACM, New York (2011)

    Google Scholar 

  18. Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ algorithms and their precise cost estimation by sharp simulator. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 789–819. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_30

    Chapter  Google Scholar 

  19. Meixia, L., Yunfei, F.: LLL algorithm and application. J. Chongqing Vocat. Tech. Inst. 16(2), 161–163 (2007)

    Google Scholar 

  20. Chen, L., Ben, H., Huang, J.: An encryption depth optimization scheme for fully homomorphic encryption. In: International Conference on Identification, Information and Knowledge in the Internet of Thingsm Beijing, pp. 137–141 (2014)

    Google Scholar 

  21. Chen, Z., Wang, J., Zhang, Z., Song, X.: A fully homomorphic encryption scheme with better key size. China Communications 11(9), 82–92 (2014)

    Article  Google Scholar 

  22. Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divisors: breaking fully-homomorphic-encryption challenges over the integers. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 502–519. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_30

    Chapter  Google Scholar 

  23. Challa, R., VijayaKumari, G., Sunny, B.: Secure Image processing using LWE based Homomorphic encryption. In: IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). Coimbatore, pp. 1–6 (2015)

    Google Scholar 

  24. Baocang, W., Yupu, H.: Public key cryptosystem based on two cryptographic assumptions. IEE Proc. Commun. 152(6), 861–865 (2005)

    Article  Google Scholar 

  25. Baocang, W., Yupu, H.: Diophantine approximation attack on a fast public key cryptosystem. In: Chen, K., Deng, R., Lai, X., Zhou, J. (eds.) ISPEC 2006. LNCS, vol. 3903, pp. 25–32. Springer, Heidelberg (2006). https://doi.org/10.1007/11689522_3

    Chapter  Google Scholar 

  26. Wang, B., Wu, Q., Hu, Y.: A knapsack-based probabilistic encryption scheme. Inf. Sci. 177(19), 3884–3981 (2007)

    Article  MathSciNet  Google Scholar 

  27. Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44670-2_6

    Chapter  Google Scholar 

  28. Jintai, D., Chengdong, T.: A new algorithm for solving the general approximate common divisors problem and cryptanalysis of the FHE based on the GACD problem. Cryptology ePrint Archive, Report 2014/042 (2014). http://eprint.iacr.org/

  29. Lepoint, T.: Design and implementation of lattice-based cryptography. Theses, Ecole Normale Sup´erieure de Paris - ENS Paris, June 2014

    Google Scholar 

  30. Cheon, J.H., Stehlé, D.: Fully homomophic encryption over the integers revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 513–536. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_20

    Chapter  Google Scholar 

  31. Galbraith, S.D., Gebregiyorgis, S.W., Murphy, S.D.: Algorithms for the approximate common divisor problem. In: Proceedings of Twelfth Algorithmic Number Theory Symposium (ANTS-XII) (2016)

    Google Scholar 

  32. Galbraith, S.D., Gebregiyorgis, S.W., Murphy, S.: Algorithms for the approximate common divisor problem. LMS J. Comput. Math. 19(A), 58–72 (2016)

    Article  MathSciNet  Google Scholar 

  33. Xu, J., Sarkar, S., Hu, L.: Revisiting orthogonal lattice attacks on approximate common divisor problems and their applications. Cryptology ePrint Archive: Report 2018/1208, pp. 6–11 (2018)

    Google Scholar 

  34. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. Stacs 2607, 145–156 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

First of all, I would like to thank my mentor Professor Baocang Wang and Professor Hailou Yao. When I was puzzled to solve the AGCD problem, it was Professor Wang’s appropriate advice that guides me. In addition, when I wrote my paper, Professor Wang and Professor Yao also gave me many valuable opinions and suggestions which benefited me a lot. In the end, I would like to express my heartfelt thanks to Professor Wang and Professor Yao for their concern and help.

This work is supported by the National Key R&D Program of China under Grant No. 2017YFB0802000, the National Natural Science Foundation of China under Grant Nos. 61572390, U1736111, the National Cryptography Development Fund under Grant No. MMJJ20180111, the Plan For Scientific Innovation Talent of Henan Province under Grand no. 184100510012, the Program for Science & Technology Innovation Talents in Universities of Henan Province under Grant No. 8HASTIT022, the Innovation Scientists and Technicians Troop Construction Projects of Henan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leizhang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Qu, Q., Li, T., Chen, Y. (2019). Implementing Attacks on the Approximate Greatest Common Divisor Problem. In: Shen, B., Wang, B., Han, J., Yu, Y. (eds) Frontiers in Cyber Security. FCS 2019. Communications in Computer and Information Science, vol 1105. Springer, Singapore. https://doi.org/10.1007/978-981-15-0818-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0818-9_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0817-2

  • Online ISBN: 978-981-15-0818-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics