Skip to main content

Light Trap: A Dynamic Tool for Data Analysis, Documenting, and Monitoring Insect Populations and Diversity

  • Chapter
  • First Online:
Innovative Pest Management Approaches for the 21st Century

Abstract

Insects have the ability to see ultraviolet (UV) radiation unlike vertebrates. Light sources that emit large amounts of UV radiation are often used to attract nocturnal insects. Devices that exploit this behavior, such as light traps are used for detecting pest outbreaks and forecasting. Some diurnal species have attraction to yellow color, and hence yellow pan traps are used for conducting surveys for pest outbreaks. Yellow illumination lamps have been used effectively to control the activity of nocturnal moths and thus reduce damage to fruits, vegetables, and flowers. Covering cultivation facilities with film that filters out near-UV radiation reduces the invasion of pests such as whiteflies and thrips into the facilities, thus reducing damage. Reflective material placed on cultivated land can control the approach of flying insects such as aphids. Hence, light trap has been found an essential part of Integrated Pest Management (IPM). According to the requirement, it can be set to either kill the pests or simply trap only. Trapped insects can also be used for study about the nature and their potential use in IPM. Light traps have been of significant importance in IPM and long-term planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Addison LD, Watson BJ, Webber LA (1979) Apparatus for the use of CO2 gas with a CDC light trap. Mosq News 39:803–804

    Google Scholar 

  • Axmacher JC, Fiedler K (2004) Manual versus automatic moth sampling at equal light sources: a comparison of catches from Mt. Kilimanjaro. J Lepidopterists’ Soc 58:196–202

    Google Scholar 

  • Axmacher JC, Holtmann G, Scheuermann L, Brehm G, Müller- Hohenstein K, Fiedler K (2004a) Diversity of geometrid moths (Lepidoptera: Geometridae) along an Afrotropical elevational rainforest transect. Divers Distrib 10:293–302

    Article  Google Scholar 

  • Axmacher JC, Tünte H, Schrumpf M (2004b) Diverging diversity patterns of vascular plants and geometrid moths during forest regeneration on Mt Kilimanjaro, Tanzania. J Biogeogr 31:895–904

    Article  Google Scholar 

  • Baker RR, Sadovy Y (1978) The distance and nature of the light-trap response of moths. Nature 276:818–821

    Article  Google Scholar 

  • Basset Y (1988) A composite interception trap for sampling arthropods in tree canopies. Aust J Entomol 27:213–219

    Article  Google Scholar 

  • Basset Y, Springate ND, Aberlenc HP, Delvare G (1997) A review of methods for sampling arthropods in tree canopies. Canopy Arthropods 35:27–52

    Google Scholar 

  • Beavis IC (1995) The first light trap, 1st century AD. Entomol Rec J Var 197:155

    Google Scholar 

  • Bera KP (2015) Development of a new solar light trap model and its utilisation as IPM tool in agriculture. JETIR 2(3):549–554

    Google Scholar 

  • Blake D, Hutson AM, Racey PA, Rydell J, Speakman JR (1994) Use of lamplit roads by foraging bats in southern England. J Zool (Lond) 234:453–462

    Article  Google Scholar 

  • Blomberg O, Itmies J, Kuusela K (1978) The influence of weather factors on insect catches in traps equipped with different lamps in northern Finland. Annales Entomologici Fennici 44:56–62

    Google Scholar 

  • Bowden J (1982) An analysis of factors affecting catches of insects in light traps. Bull Entomol Res 72:535–556

    Article  Google Scholar 

  • Bowden J, Church BM (1973) The influence of moonlight on catches of insects in light-traps in Africa. Part II. The effect of moon phase on light trap catches. Bull Entomol Res 63:129–142

    Article  Google Scholar 

  • Brehm G, Axmacher JC (2006) A comparison of manual and automatic moth sampling methods (Lepidoptera: Arctiidae, Geometridae) in a rain forest in Costa Rica. Environ Entomol 35:757–764

    Article  Google Scholar 

  • Bretherton RF (1954) Moth traps and their lamps: an attempt at comparative analysis. Entomol Gaz 5:145–154

    Google Scholar 

  • Bruce-White C, Shardlow M (2011) A review of the impact of artificial light on invertebrates. Buglife—The Invertebrate Conservation Trust Peterborough P 33 www.buglife.org.uk/News/newsarchive/News+Archive+2011/Save+bugs+from+light+pollution

  • Burkett DA, Butler JF, Kline DL (1998) Field evaluation of colored light-emitting diodes as attractants for woodland mosquitoes and other diptera in north Central Florida. J Am Mosq Control Assoc 14(2):186–195

    CAS  PubMed  Google Scholar 

  • Cleve K (1954) Einfluss der Wellenl.nge des Lichtes auf den Lichtfang der Schmetterlinge. In Titschak E (ed) Deutscher Entomologentag in Hamburg 30 Juli bis 3. August 1953. Jena (Fischer), pp 107–113

    Google Scholar 

  • Cohnstaedt LEE, Gillen JI, Munstermann LE (2008) Light-emitting diode technology improves insect trapping. J Am Mosq Control Assoc 24(2):331

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa HS, Robb KL, Wilen CA (2002) Field trials measuring the effects of ultraviolet-absorbing greenhouse plastic films on insect populations. J Econ Entomol 95(1):113–120

    Article  CAS  PubMed  Google Scholar 

  • Dennis J, Franzén M, Ranius T (2014) Surveying moths using light traps: effects of weather and time of year. PLoS One 9(3):e92453

    Article  CAS  Google Scholar 

  • DOCCM-286730 Invertebrates: Light trapping v1.0 (2016) Inventory and monitoring toolbox: invertebrates. Department of Conservation Te Papa Atawhai

    Google Scholar 

  • Donners M, van Grunsven RH, Groenendijk D, van Langevelde F, Bikker JW, Longcore T, Veenendaal E (2018) Colors of attraction: modeling insect flight to light behavior. J Exp Zool A Ecol Integr Physiol 329(8–9):434–440

    PubMed  Google Scholar 

  • Dufay C (1964) Contribution a l’Étude du phototropisme des Lépidoptères noctuidae. Masson. Annales des Sciences Naturelles - Zoologie et Biologie Animale Paris 12e série 6:281–406

    Google Scholar 

  • Dufay C (1965) étude du phototropisme des Lépidoptères Noctuidae. Applications aux chasses à la lumière. Alexanor 4(81–88):131–136

    Google Scholar 

  • Eguchi E, Watanabe K, Hariyama T, Yamamoto K (1982) A comparison of electrophysiologically determined spectral responses in 35 species of Lepidoptera. J Insect Physiol 28(8):675–682

    Article  Google Scholar 

  • Eisenbeis G, Hassel F (2000) Zur Anziehung nachtaktiver Insekten durch Straßenlaternen. Natur und Landschaft 75(4):145–156

    Google Scholar 

  • Elston R, Apperson C (1977) A light-activated on-off switch for the CDC light trap. J Med Entomol 14(2):254–255

    Article  CAS  PubMed  Google Scholar 

  • Feltwell J (2010) Types of invertebrates attracted to artificial lighting. Personal Communication

    Google Scholar 

  • Frank KD (1988) Impact of outdoor lighting on moths: an assessment. J Lepid Soc 42(2):63–93

    Google Scholar 

  • Frank KD (2006) Effects of artificial night light on moths. In: Rich C, Longcore T (eds) Ecological consequences of artificial night lighting. Island Press, Washington, DC, pp 345–364

    Google Scholar 

  • Fry R, Waring P (1996) A guide to moth traps and their use. Amat Entomol 24:1–60

    Google Scholar 

  • Goodman LJ (1965) The role of certain optomotor reactions in regulating stability in the rolling plane during flight in the desert locust, Schistocerca gregaria. J Exp Biol 42(3):385–407

    Google Scholar 

  • Gotthard K (2000) Increased risk of predation as a cost of high growth rate: an experimental test in a butterfly. J Anim Ecol 69(5):896–902

    Article  PubMed  Google Scholar 

  • Hartstack AW (1979) Light sources, trap design and other factors affecting moth catch. In: Rabb RL, Kennedy GG (eds) Movement of highly mobile insects: concepts and methodology in research. North Carolina State University, Raleigh, pp 232–241

    Google Scholar 

  • Hirama J, Seki K, Hosodani N, Matsui Y (2007) Development of a physical control device for insect pests using a yellow LED light source: results of behavioral observations of the Noctuidae family. J Sci High Technol Agric (Japan) 19:34–40

    Article  Google Scholar 

  • Hironaka M, Hariyama T (2009) Insect orientation to natural and artificial light. Jpn J Appl Entomol Zool 53:135–145

    Article  Google Scholar 

  • Holyoak M, Jarosik V, Novak I (1997) Weather-induced changes in moth activity bias measurement of long-term population dynamics from light trap samples. Entomol Exp Appl 83:329–335

    Article  Google Scholar 

  • Honda K (2011) Reactions to light in insects and practical applications. J Appl Biomech 35:233–236

    Google Scholar 

  • Hsiao HS (1972) Attraction of moths to light and to infrared radiation. San Francisco Press, San Francisco, p 89

    Google Scholar 

  • Hsiao HS (1973) Flight paths of night-flying moths to light. J Insect Physiol 19:1971–1976

    Article  CAS  PubMed  Google Scholar 

  • Jander R (1963) Insect orientation. Annu Rev Entomol 8:95–114

    Article  Google Scholar 

  • Johnston J, Weaver J, Sudia W (1973) Flashlight batteries as a power source for CDC miniature light traps. Mosq News 33:190–194

    Google Scholar 

  • Kimura Y (1982) Control of aphid infestation by mulching with silver-colored polyethylene films. Plant Prot 36:469–473

    Google Scholar 

  • Kono S, Yase J (1996) Characteristic of physical control and using technology. Utilization of color sense of insects. Plant Prot 50:30–33

    Google Scholar 

  • Lam JJ, Stewart PA (1969) Modified traps using blacklight lamps to capture nocturnal tobacco insects. J Econ Entomol 62:1378–1381

    Article  Google Scholar 

  • Leinonen R, Soderman G, Itamies J, Rytkonen S, Rutanen I (1998) Intercalibration of different light-traps and bulbs used in moth monitoring in northern Europe. Entomol Fenn 9(1):37–51

    Article  Google Scholar 

  • Lewington R (2003) Pocket guide to the butterflies of Great Britain and Ireland. British Wildlife Publishing, Gillingham

    Google Scholar 

  • Liu Y, Axmacher JC, Li L, Wang C, Yu Z (2007) Ground beetle (Coleoptera: Carabidae) inventories: a comparison of light and pitfall trapping. Bull Entomol Res 97(6):577–583

    Article  CAS  PubMed  Google Scholar 

  • Long CV, Flint JA, Lepper PA (2010) Insect attraction to wind turbines: does colour play a role? Eur J Wildl Res 57(2):323–331

    Article  Google Scholar 

  • Mafia RG, Loureiro EB, Silva JB, Simões JAC, Zarpelon TG, Junior NB, Damacena MB (2018) A new light trap model as an alternative for controlling pests in Eucalyptus plantations. Neotrop Entomol 47(2):326–328

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Rochow VB (1974) Fine structural changes in dark-light adaptation in relation to unit studies of an insect compound eye with a crustacean-like rhabdom. J Insect Physiol 20(3):573–589

    Article  CAS  PubMed  Google Scholar 

  • Mikkola K (1972) Behavioural and electrophysiological responses of night-flying insects, especially Lepidoptera, to near-ultraviolet and visible light. In: Annales zoologici fennici. Societas Biologica Fennica Vanamo, Helsinki, pp 225–254

    Google Scholar 

  • Morge G (1973) Entomology in the western world in antiquity and in medieval times. In: Smith RF, Mittler TE, Smith CN (eds) History of entomology. Annual Reviews Inc, Palo Alto, CA, pp 37–80

    Google Scholar 

  • Morton R, Tuart LD, Wardhaugh KG (1981) The analysis and standardisation of light-trap catches of Heliothis armiger (Hübner) and H. punctiger Wallengren (Lepidoptera: Noctuidae). Bull Entomol Res 71(2):207–225

    Article  Google Scholar 

  • Nag A, Nath P (1991) Effect of moon light and lunar periodicity on the light trap catches of cutworm Agrotis ipsilon (Hufn.) moths. J Appl Entomol 111:358–360

    Article  Google Scholar 

  • Nagatsuka H (2000) Effects of reflective sheet for whiteflies and thrips. Plant Prot 54:359–362

    Google Scholar 

  • Nakagaki S, Sekiguchi K, Onuma K (1982) The growth of vegetable crops and establishment of insect and mite pests in a plastic greenhouse treated to exclude near UV radiation.(2) establishment of insect and mite pests. Bull Ibaraki-Ken Hortic Exp Sta 10:39–47

    Google Scholar 

  • Nakagaki S, Amagai H, Onuma K (1984) The growth of vegetable crops and establishment of insect and mite pests in a plastic greenhouse treated to exclude near UV radiation. (4) establishment of insect pest on tomatoes. Bull Ibaraki Hortic Exp Sta 12:89–94

    Google Scholar 

  • Nakamura T, Yamashita S (1997) Phototactic behavior of nocturnal and diurnal spiders: negative and positive phototaxis. Zool Sci 14(2):199–204

    Article  Google Scholar 

  • Nemec SJ (1971) Effects of lunar phases on light-trap collections and populations of bollworm moths. J Econ Entomol 64:860–864

    Article  Google Scholar 

  • Neville AC (1960) Aspects of flight mechanics in anisoptera dragonflies. J Exp Biol 37(3):631–656

    Google Scholar 

  • Nguyen THN, Borgemeister C, Max J, Poehling HM (2009) Manipulation of ultraviolet light affects immigration behavior of Ceratothripoides claratris (Thysanoptera: Thripidae). J Econ Entomol 102(4):1559–1566

    Article  CAS  PubMed  Google Scholar 

  • Nichanant S, Chonmapat T (2015) Solar energy-based insect Pest trap. Soc Behav Sci 197:2548–2553

    Article  Google Scholar 

  • Nirmal A, Sidar YK, Gajbhiye R, Anil K, Ganguli JL (2017) A review on evaluation of light trap against different colored electric bulbs for trapping phototrophic insects. Bull Environ Pharmacol Life Sci 6(1):209–211

    Google Scholar 

  • Nomura K (1967) Studies on orchard illumination against fruit piercing moths. III. Inhibition of moths’ flying to orchard by illumination. Jpn J Appl Entomol Zool 11:21–28

    Article  Google Scholar 

  • Nomura K, Oya S, Watanabe I, Kawamura H (1965) Studies on orchard illumination against fruit-piercing moths. I. Analysis of illumination effects, and influence of light elements on moths’ activities. Jpn J Appl Entomol Zool 9:179–186

    Article  Google Scholar 

  • Nonaka K, Nagai K (1985) Pest management using ultraviolet absorbing films. Agric Hortic 60:323–326

    Google Scholar 

  • Nowinszky L (2004) Nocturnal illumination and night flying insects. J Appl Ecol Environ Res 2(1):17–52

    Article  Google Scholar 

  • Ohta I, Kitamura T (2006) Insect pest control by ultraviolet-absorbing plastic films for greenhouse crops. Crop Prod Plast Film 232:3–8

    Google Scholar 

  • Patrick BH, Lyford B, Ward J, Barratt BIP (1992) Lepidoptera and other insects of the Rastus Burn Basin, the Remarkables, Otago. J R Soc New Zealand 22(4):265–278

    Article  Google Scholar 

  • Prokopy RJ, Owens ED (1983) Visual detection of plants by herbivorous insects. Annu Rev Entomol 28:337–364

    Article  Google Scholar 

  • Raviv M, Antignus Y (2004) UV radiation effects on pathogens and insect pests of greenhouse-grown crops. Photochem Photobiol 79:219–226

    Article  CAS  PubMed  Google Scholar 

  • Ricklefs RE (1975) Seasonal occurrence of night-flying insects on Barro Colorado Island, Panama Canal Zone. J N Y Entomol Soc 83:19–32

    Google Scholar 

  • Rydell J (1992) Exploitation of insects around streetlamps by bats in Sweden. Funct Ecol 6:744–750

    Article  Google Scholar 

  • Sermsri N, Torasa (2015) Solar energy based insect pest trap. Procedia Soc Behav Sci 197:2548–2553

    Article  Google Scholar 

  • Sharma AK, Mandloi R, Pachori R (2017) Study on biodiversity of phototactic harmful insect fauna collected in light trap in chickpea (Cicer arietinum Linn.) ecosystem. Int J Agric Sci 9(12):4037–4041

    Google Scholar 

  • Shimoda M, Honda KI (2013) Insect reactions to light and its applications to pest management. Appl Entomol Zool 48(4):413–421

    Article  Google Scholar 

  • Simmons AM, Kousik CS, Levi A (2010) Combining reflective mulch and host plant resistance for sweetpotato whitefly (Hemiptera: Aleyrodidae) management in watermelon. Crop Prot 29(8):898–902

    Article  Google Scholar 

  • Southwood R, Henderson PA (2000) Ecological methods. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Stewart WWA (1970) A modified CDC light trap. Mosq News 30:188–189

    Google Scholar 

  • Sudia WD, Chamberlain RW (1962) Battery-operated light trap, an improved model. Mosq News 22:126–129

    Google Scholar 

  • Taylor LR, Brown ES (1972) Effects of light-trap design and illumination on samples of moths in the Kenya highlands. Bull Entomol Res 62:91–112

    Article  Google Scholar 

  • Taylor LR, French RA (1974) Effects of light-trap design and illumination on samples of moths in English woodland. Bull Entomol Res 63:583–594

    Article  Google Scholar 

  • Thomas AW (1996) Light-trap catches of moths within and above the canopy of a northeastern forest. J Lepid Soc 50:21–45

    Google Scholar 

  • Tsuchiya M, Masui S, Kuboyama N (1995) Reduction of population density of yellow tea thrips (Scirtothrips dorsalis Hood) on mandarin orange (Citrus unshiu Marc.) trees by application of white solution with/without reflective-sheet mulching. Japanese Journal of. Appl Entomol Zool 39:305–312

    Article  Google Scholar 

  • Walcott B (1969) Movement of retinula cells in insect eyes on light adaptation. Nature 223:971–972

    Article  CAS  PubMed  Google Scholar 

  • Walker AK, Galbreath RA (1979) Collecting insects at lights: a test of four types of lamp. N Z Entomol 7:83–85

    Article  Google Scholar 

  • Williams CB (1951) Comparing the efficiency of insect traps. Bull Entomol Res 42:513–517

    Article  Google Scholar 

  • Williams CB, French RA, Hosnisic MM (1955) A second experiment on testing the relative efficiency of insect traps. Bull Entomol Res 46:193–204

    Article  Google Scholar 

  • Wirooks L (2005) Die.kologische Aussagekraft des Lichtfangs. Eine Studie zur Habitatbindung und kleiner.einigen Verteilung von Nachtfaltern und ihren Raupen. Havixbeck-Hohenholte Verlag Wolf & Kreuels, p 320

    Google Scholar 

  • Yabu T (1999) Control of insect pests by using illuminator of ultra-high luminance light emitting diode (LED). Effect of the illumination on the flight and mating behavior of Helicoverpa armigera. Plant Prot 53:209–211

    Google Scholar 

  • Yamada M, Uchida T, KUramitsu O, Kosaka S, Nishimura T, Arikawa K (2006) Insect control lighting for reduced and insecticide-free agriculture. Matsushita-Denko-Giho 54(1):30–35

    Google Scholar 

  • Yase J, Yamanaka M, Fujii H, Kosaka S (1997) Control of tobacco budworm, Helicoverpa armigera (Hubner), beet armyworm, Spodoptera exigua (Hubner), common cutworm, Spodoptera litura (Fabricius), feeding on carnation, roses and chrysanthemum by overnight illumination with yellow fluoresent lamps. Bull Natl Agric Res Cent West Reg 93:10–14. (in Japanese)

    Google Scholar 

  • Yase J, Nagaoka O, Futai K, Izumida T, Kosaka S (2004) Control of cabbage webworm, Hellula undalis Fabricius (Lepidoptera: Pyralidae) using yellow fluorescent lamps. Jpn J Appl Entomol Zool 46:29–37

    Google Scholar 

  • Yoon J, Nomura M, Ishikura S (2012) Analysis of the flight activity of the cotton bollworm Helicoverpa armigera (Hübner)(Lepidoptera: Noctuidae) under yellow LED lighting. Jpn J Appl Entomol Zool 56(3):103–110

    Article  Google Scholar 

  • Young Jr DP, Erickson WP, Strickland MD, Good RE, Sernka KJ (2003) Comparison of Avian responses to UV-light-reflective paint on wind turbines: subcontract report, July 1999–December 2000 (no. NREL/SR-500-32840). National Renewable Energy Lab., Golden

    Google Scholar 

Download references

Acknowledgement

The authors are grateful to the authority of the Department of Food and Public Distribution and ICAR-Indian Institute of Vegetable Research for their help and encouragement.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kammar, V., Rani, A.T., Kumar, K.P., Chakravarthy, A.K. (2020). Light Trap: A Dynamic Tool for Data Analysis, Documenting, and Monitoring Insect Populations and Diversity. In: Chakravarthy, A. (eds) Innovative Pest Management Approaches for the 21st Century. Springer, Singapore. https://doi.org/10.1007/978-981-15-0794-6_8

Download citation

Publish with us

Policies and ethics