Skip to main content

Insect Pest Detection, Migration and Monitoring Using Radar and LiDAR Systems

  • Chapter
  • First Online:
Innovative Pest Management Approaches for the 21st Century

Abstract

Radar and LiDAR entomology are emerging fields. Radars particularly polarimetric systems can be used effectively to detect and monitor insect pest population movements like migration. Radars can also be used to monitor high altitude migratory paths of insects. Doppler weather radars are able to detect and pinpoint area-wide population sources. They are also able to detect dense concentrations of airborne insects. Thus, radars and LiDARs contribute information on pest infestation density and population life stage. Integration of environmental condition to the above data will enable entomologist to predict the migration of insect pests. The portable harmonic radar system is a useful tool for effective detection of pest during both day and night. The harmonic radar system is also a useful tool to track the terrestrial insects. Even minute insects can be detected by a LiDAR system. Unlike radars, LiDARs can be used close to the ground for studying insects, including ecology and ethology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Brier HB, Rogers DJ (1991) Susceptibility of soybeans to damage by Nezara viridula (L.) (Hemiptera: Pentatomidae) and Riptortus serripes (F.) (Hemiptera: Alydidae) during three stages of pod development. Aust J Entomol 30(2):123–128

    Article  Google Scholar 

  • Chapman JW, Reynolds DR, Smith AD, Riley JR, Pedgley DE, Woiwod IP (2002a) High-altitude migration of the diamondback moth Plutella xylostella to the UK: a study using radar, aerial netting, and ground trapping. Ecol Entomol 27(6):641–650

    Article  Google Scholar 

  • Chapman JW, Smith AD, Woiwod AP, Reynolds DR, Riley JR (2002b) Developing-vertical-looking radar technology for monitoring insect migration. Comput Electron Agric 35:95–110

    Article  Google Scholar 

  • Chapman JW, Reynolds DR, Smith AD, Riley JR, Telfer MG, Woiwod IP (2005) Mass aerial migration in the carabid beetle Notiophilus biguttatus. Ecol Entomol 30(3):264–272

    Article  Google Scholar 

  • Chapman JW, Drake VA, Reynolds DR (2011) Recent insights from radar studies of insect flight. Annu Rev Entomol 56:337–356

    Article  CAS  Google Scholar 

  • Charles R, Vaughan H, Walemar K (1979) Radar, population ecology and pest management. In: Proceeding workshop, May, 2–4, vol 1978. Wallops Flight Centre, Wally’s Island, p 246

    Google Scholar 

  • Chilson PB, Frick WF, Kelly JF, Howard KW, Larkin RP, Diehl RH, Westrook JK, Kelly TA, Kunz TH (2012) Partly cloudy with a chance of migration: weather, radars, and aeroecology. Bull Am Meteorol Soc 93:669–686

    Article  Google Scholar 

  • Crawford A (1949) Radar reflections in the low atmosphere. Proc Inst Radio Eng 37:404–405

    Google Scholar 

  • Drake VA, Reynolds DR (2012) Radar entomology: observing insect flight and migration. CABI, Wallingford, p 489

    Book  Google Scholar 

  • Drake VA, Drake VA, Gatehouse AG (1995) Insect migration: tracing resources through space and time. Cambridge University Press, Cambridge, p 478

    Book  Google Scholar 

  • Gregorio E, Gené J, Sanz R, Rocadenbosch F, Chueca P, Arnó J, Rosell-Polo JR (2018) Polarization LiDAR detection of agricultural aerosol emissions. J Sens 2018:1864106

    Article  Google Scholar 

  • Hagler J, Mueller S, Teuber LR, Van Deynze A, Martin J (2011) A method for distinctly marking honey bees, Apis mellifera, originating from multiple apiary locations. J Insect Sci 11(1):143

    PubMed  PubMed Central  Google Scholar 

  • Jackson PL, Straussfogel D, Lindgren BS, Mitchell S, Murphy B (2008) Radar observation and aerial capture of mountain pine beetle, Dendroctonus ponderosae Hopk.(Coleoptera: Scolytidae) in flight above the forest canopy. Can J For Res 38(8):2313–2327

    Article  Google Scholar 

  • Jansson S, Brydegaard M (2018) Passive kHz LiDAR for the quantification of insect activity and dispersal. Anim Biotelem 6(1):6

    Article  Google Scholar 

  • Kho J-W, Jung M, Lee D (2018) Evaluating the efficacy of two insect detection methods with Riptortus pedestris: portable harmonic radar system and fluorescent marking system. Pest Manage Sci 75:224–233. https://doi.org/10.1002/p25106

    Article  Google Scholar 

  • Kim et al (2018) The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos Meas Tech 11:6107–6135

    Article  CAS  Google Scholar 

  • Lee DH, Wright SE, Boiteau G, Vincent C, Leskey TC (2013) Effectiveness of glues for harmonic radar tag attachment on Halyomorpha halys (Hemiptera: Pentatomidae) and their impact on adult survivorship and mobility. Environ Entomol 42(3):515–523

    Article  Google Scholar 

  • Leskinen M, Markkula I, Koistinen J, Pylkkö P, Ooperi S, Siljamo P et al (2011) Pest insect immigration warning by an atmospheric dispersion model, weather radars and traps. J Appl Entomol 135(1–2):55–67

    Article  Google Scholar 

  • Lim U (2013) Occurrence and control method of Riptortus pedestris (Hemiptera: Alydidae): Korean perspectives. Kor J Appl Entomol 52(4):437–448

    Article  Google Scholar 

  • Mascanzoni D, Wallin H (1986) The harmonic radar: a new method of tracing insects in the field. Ecol Entomol 11(4):387–390

    Article  Google Scholar 

  • Mei L, Guan ZG, Zhou HJ, Lv J, Zhu ZR, Cheng JA, Somesfalean G (2012) Agricultural pest monitoring using fluorescence LiDAR techniques. Appl Phys B 106(3):733–740

    Article  CAS  Google Scholar 

  • Milanesio D, Saccani M, Maggiora R, Laurino D, Porporato M (2016) Design of a harmonic radar for the tracking of the Asian yellow-legged hornet. Ecol Evol 6(7):2170–2178

    Article  Google Scholar 

  • Osborne JL, Clark SJ, Morris RJ, Williams IH, Riley JR, Smith AD et al (1999) A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. J Appl Ecol 36(4):519–533

    Article  Google Scholar 

  • Ovaskainen O, Smith AD, Osborne JL, Reynolds DR, Carreck NL, Martin AP et al (2008) Tracking butterfly movements with harmonic radar reveals an effect of population age on movement distance. Proc Natl Acad Sci 105(49):19090–19095

    Article  CAS  Google Scholar 

  • Poffo DA, Beccaece HM, Caranti GM, Comer RA et al (2018) Migration monitoring of Ascia monuste (Lepidoptera) and Schistocerca cancellata in Argentina using RMAI weather radar. ISPRS J Photogramm Remote Sens. https://doi.org/10.1016/j.isprsjprs.2018.05011

  • Reynolds DR, Riley JR (1997) Flight behaviour and migration of insect pests. Radar studies in developing countries, vol 71. Natural Resources Institute (NRI), Chatham

    Google Scholar 

  • Riley JR, Greggers U, Smith AD, Reynolds DR, Menzel R (2005) The flight paths of honeybees recruited by the waggle dance. Nature 435(7039):205

    Article  CAS  Google Scholar 

  • Riley JR, Chapman JW, Reynolds DR, Smith AD (2007) Recent applications of radar to entomology. Outlooks Pest Manage 18(2):62

    Article  Google Scholar 

  • Smith AD, Riley JR, Gregory RD (1993) A method for routine monitoring of the aerial migration of insects using a vertical-looking radar. Philos Trans R Soc (Biol Sci) 340(1294):393–404. https://doi.org/10.1098/rstb.1993.0081

    Article  Google Scholar 

  • Veneziano D, Hallmark S, Souleyrette R (2002) Accuracy evaluation of LIDAR – derived Terrain data for highway location. Computer – Aided Civil and Infrastructure Engineering

    Google Scholar 

Download references

Acknowledgement

The authors are thankful to the Director of IISC Bangalore, HOD Aerospace engineering and to the Department of Plant Protection and Biology. Swedish University, Sweden select photos and figures have been retrieved from the published papers, thankful to the authors and publishers.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dwivedi, M., Shadab, M.H., Santosh, V.R. (2020). Insect Pest Detection, Migration and Monitoring Using Radar and LiDAR Systems. In: Chakravarthy, A. (eds) Innovative Pest Management Approaches for the 21st Century. Springer, Singapore. https://doi.org/10.1007/978-981-15-0794-6_4

Download citation

Publish with us

Policies and ethics