Skip to main content

Insect Vectors of Phytoplasma Diseases in the Tropics: Molecular Biology and Sustainable Management

  • Chapter
  • First Online:
Innovative Pest Management Approaches for the 21st Century

Abstract

Phytoplasmas are pleomorphic, non-culturable, wall-less prokaryotes that colonize phloem tissues of several plant species inflicting yellows-type diseases. They are transmitted between plants by vegetative propagation, and insect vectors are the chief means of dissemination of phytoplasmas. This chapter summarizes recent progress in phytoplasma research, focusing on molecular division, phytoplasma–insect vector interactions, molecular mechanisms of insect transmissibility, vector dispersal, serological and molecular diagnostic tools for detection and characterization of phytoplasma, practices for sustainable disease management, and important phytoplasma diseases in India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Algar WR, Krull UJ (2008) Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem 391(5):1609–1618

    Article  CAS  PubMed  Google Scholar 

  • Al-Subhi A, Hogenhout SA, Al-Yahyai RA, Al-Sadi AM (2017) Classification of a new phytoplasmas subgroup 16SrII-W associated with Crotalaria witches’ broom diseases in Oman based on multi gene sequence analysis. BMC Microbiol 17:221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alma A, Marzachi C, d’Aquilio M, Bosco D (2000) Cyclamen (Cyclamen persicum L.): a dead-end host species for 16Sr-IB and-IC subgroup phytoplasmas. Ann Appl Biol 136(2):173–178

    Article  CAS  Google Scholar 

  • Beanland L, Hoy CW, Miller SA, Nault LR (1999) Leafhopper transmission of the aster yellows phytoplasma: does sex matter? Environ Entomol 28:1101–1106

    Article  Google Scholar 

  • Beanland L, Hoy CW, Miller SA, Nault LR (2000) Influence of aster yellows phytoplasma on the fitness of aster leafhopper (Homoptera: Cicadellidae). Ann Entomol Soc Am 93(2):271–276

    Article  Google Scholar 

  • Beanland L, Madden LV, Hoy CW, Miller SA, Nault LR (2005) Temporal distribution of aster leafhopper (Macrosteles quadrilineatus), sex ratios and spatial pattern of aster yellows phytoplasma disease in lettuce. Ann Entomol Soc Am 98:756–762

    Article  Google Scholar 

  • Berg M, Davies DL, Clark MF, Vetten HJ, Maie G, Marcone C, Seemüller E (1999) Isolation of the gene encoding an immunodominant membrane protein of the apple proliferation phytoplasma, and expression and characterization of the gene product. Microbiology 145(8):1937–1943

    Article  CAS  PubMed  Google Scholar 

  • Bertaccini A, Duduk B, Paltrinieri S, Contaldo N (2014) Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. Am J Plant Sci 5:1763–1788

    Article  Google Scholar 

  • Bertamini M, Nedunchezhian N (2001) Effect of phytoplasma [stolbur-subgroup (Bois noir-BN)] on photosynthetic pigments, saccharides, ribulose-1,5-bisphosphate carboxylase, nitrate and nitrite reductases and photosynthetic activities in field-grow grapevine (Vitis vinifera L cv Chardonnay) leaves. Photosynthetica 39:119–122

    Article  CAS  Google Scholar 

  • Bertin S, Palermo S, Marzachì C, Bosco D (2004) A comparison of molecular diagnostic procedures for the detection of aster yellows phytoplasmas (16Sr-I) in leafhopper vectors. Phytoparasitica 32:141–145

    Article  CAS  Google Scholar 

  • Bextine B, Lampe D, Lauzon C, Jackson B, Miller TA (2005) Establishment of a genetically marked insect-derived symbiont in multiple host plants. Curr Microbiol 50(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Bhat AI, Jiby MV, Anandaraj M, Bhadramurthy V, Patel KD, Patel NR, Agalodia AV (2008) Occurrence and partial characterization of a phytoplasma associated with phyllody disease of fennel (Foeniculum vulgare Mill.) in India. J Phytopathol 156(11–12):758–761

    Article  CAS  Google Scholar 

  • Bhat AI, Madhubala R, Hareesh PS, Anandaraj M (2006) Detection and characterization of the phytoplasma associated with a phyllody disease of black pepper (Piper nigrum L.) in India. Sci Hortic 107(2):200–204

    Article  CAS  Google Scholar 

  • Bigliardi E, Sacchi L, Genchi M, Alma A, Pajoro M, Daffonchio D, Avanzati AM (2006) Ultrastructure of a novel Cardinium sp. symbiont in Scaphoideus titanus (Hemiptera: Cicadellidae). Tissue Cell 38(4):257–261

    Article  CAS  PubMed  Google Scholar 

  • Bindra OS, Bakhetia DRC (1976) A note on the natural incidence of sesamum phyllody virus in Brassica sp at Ludhiana. J Res Punjab Agric Univ 4:406–408

    Google Scholar 

  • Blomquist CL, Barbara DJ, Davies DL, Clark MF, Kirkpatrick BC (2001) An immunodominant membrane protein gene from the Western X-disease phytoplasma is distinct from those of other phytoplasmas. Microbiology 147(3):571–580

    Article  CAS  PubMed  Google Scholar 

  • Bosco D, Minucci C, Boccardo G, Conti M (1997) Differential acquisition of chrysanthemum yellows phytoplasma by three leafhopper species. Entomol Exp Appl 83(2):219–224

    Article  Google Scholar 

  • Bose RD, Misra SD (1938) Studies in Indian fibre plants, phyllody and some other abnormalities in the flower of sunhemp. Indian J Agric Sci 8:417–423

    Google Scholar 

  • Bressan A, Purcell AH (2005) Effect of benzothiadiazole on transmission of X-disease phytoplasma by the vector Colladonus montanus to Arabidopsis thaliana, a new experimental host plant. Plant Dis 89(10):1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Brown SE, Been BO, McLaughlin WA (2006) Detection and variability of the lethal yellowing group (16Sr IV) phytoplasmas in the Cedusa sp. (Hemiptera: Auchenorrhyncha: Derbidae) in Jamaica. Ann Appl Biol 149(1):53–62

    Article  CAS  Google Scholar 

  • Bulgari D, Bozkurt AI, Casati P, Caglayan K, Quaglino F, Bianco PA (2012) Endophytic bacterial community living in roots of healthy and ‘Candidatus Phytoplasma mali’-infected apple (Malus domestica, Borkh) trees. Antonie Van Leeuwenhoek 102(4):677–687

    Article  PubMed  Google Scholar 

  • Bulgari D, Casati P, Crepaldi P, Daffonchio D, Quaglino F, Brusetti L, Bianco PA (2011) Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants. Appl Environ Microbiol 77(14):5018–5022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caudwell A (1990) Epidemiology and characterization of Flavescence dorée (FD) and other grapevine yellows. Agronomie 10(8):655–663

    Article  Google Scholar 

  • Chen J, Teixeira DC, Wulff NA, Martins EC, Kitajima EW, Bassanezi R, Ayres AJ, Bové JM (2008) A phytoplasma closely related to the Pigeon Pea Witches’-Broom Phytoplasma (16Sr IX) is associated with citrus huanglongbing symptoms in the state of São Paulo, Brazil. Phytopathology 98(9):977–984

    Article  Google Scholar 

  • Chen TA, Lei JD, Lin CP (1992) Detection and identification of plant and insect mollicutes. In: Withcomb RF, Tully JG (eds) The mycoplasmas, vol 5. Academic Press, New York, pp 393–424

    Google Scholar 

  • Chiesa S, Prati S, Assante G, Maffi D, Bianco PA (2007) Activity of synthetic and natural compounds for phytoplasma control. Bull Insectol 60:313–314

    Google Scholar 

  • Chiykowski LN, Sinha RC (1970) Sex and age of Macrosteles fascifrons in relation to the transmission of the clover proliferation causal agent. Ann Entomol Soc Am 63(6):1614–1617

    Article  Google Scholar 

  • Choi YH, Tapias EC, Kim HK, Lefeber AW, Erkelens C, Verhoeven JTJ, Verpoorte R (2004) Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiol 135(4):2398–2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen NM, Axelsen KB, Nicolaisen M, Schulz A (2005) Phytoplasmas and their interactions with hosts. Trends Plant Sci 10(11):526–535

    Article  CAS  PubMed  Google Scholar 

  • Ciancio A, Mukerji KG (eds) (2008) Integrated management of diseases caused by fungi, phytoplasma and bacteria, vol 3. Springer

    Google Scholar 

  • Constable FE, Jones J, Gibb KS, Chalmers YM, Symons RH (2004) The incidence, distribution and expression of Australian grapevine yellows, restricted growth and late season leaf curl diseases in selected Australian vineyards. Ann Appl Biol 144(2):205–218

    Article  Google Scholar 

  • Ćurković Perica M (2008) Auxin-treatment induces recovery of phytoplasma-infected periwinkle. J Appl Microbiol 105(6):1826–1834

    Article  CAS  PubMed  Google Scholar 

  • Davis RE, Whitcomb RF, Steere RL (1968) Remission of aster yellows disease by antibiotics. Science 161(3843):793–795

    Article  CAS  PubMed  Google Scholar 

  • Doi Y, Teranaka M, Yora K, Asuyama H (1967) Mycoplasma-or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows, or paulownia witches’ broom. Jpn J Phytopathol 33(4):259–266

    Article  Google Scholar 

  • Dutta I, Saha P, Majumder P, Sarkar A, Chakraborti D, Banerjee S, Das S (2005) The efficacy of a novel insecticidal protein, Allium sativum leaf lectin (ASAL), against homopteran insects monitored in transgenic tobacco. Plant Biotechnol J 3(6):601–611

    Article  CAS  PubMed  Google Scholar 

  • Ebbert MA, Jeffers DP, Harrison NA, Nault LR (2001) Lack of specificity in the interaction between two maize stunting pathogens and field collected Dalbulus leafhoppers. Entomol Exp Appl 101(1):49–57

    Article  Google Scholar 

  • Eben A, Gross J (2013) Innovative control of psyllid vectors of European fruit tree phytoplasmas. Phytopathogen Mollicut 3(1):37–39

    Article  Google Scholar 

  • Firrao G, Gibb K, Streten C (2005) Short taxonomic guide to the genus ‘Candidatus Phytoplasma. J Plant Pathol:249–263

    Google Scholar 

  • Firrao G, Moretti M, Rosquete R, Gobbi E, Locci R (2007) Use of polymerase chain reaction to produce oligonucleotide probes for mycoplasma like organisms. J Plant Pathol 87:101–107

    Google Scholar 

  • Frasco M, Chaniotakis N (2009) Semiconductor quantum dots in chemical sensors and biosensors. Sensors 9(9):7266–7286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frosini A, Casati P, Bianco PA, Bordoni R, Consolandi C, Castiglioni B, Rossi Bernardi L (2002) Ligase detection reaction and universal array as a tool to detect grapevine infecting phytoplasmas. Minerva Biotecnol 14(3/4):265–268

    Google Scholar 

  • Galetto L, Bosco D, Balestrini R, Genre A, Fletcher J, Marzachì C (2011) The major antigenic membrane protein of “Candidatus Phytoplasma asteris” selectively interacts with ATP synthase and actin of leafhopper vectors. PLoS One 6(7):e22571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamalero E, D’Amelio R, Musso C, Cantamessa S, Pivato B, D’Agostino G, Berta G (2010) Effects of Pseudomonas putida S1Pf1Rif against chrysanthemum yellows phytoplasma infection. Phytopathology 100(8):805–813

    Article  PubMed  Google Scholar 

  • Garau R, Prota VA, Sechi A, Moro G (2008) Biostimulants distribution to plants affected by ‘Bois noir’: results regarding recovery. Petria 18:366–368

    Google Scholar 

  • García-Chapa M, Batlle A, Laviña A, Camprubí A, Estaún V, Calvet C (2004) Tolerance increase to pear decline phytoplasma in mycorrhizal OHF-333 pear rootstock. Acta Hortic 657:437–441

    Article  Google Scholar 

  • Garcia-Salazar C, Whalon ME, Rahardja U (1991) Temperature-dependent pathogenicity of the X-disease mycoplasma-like organism to its vector, Paraphlepsius irroratus (Homoptera: Cicadellidae). Environ Entomol 20(1):179–184

    Article  Google Scholar 

  • Gross J, Mayer CJ, Eben A (2011) Development of innovative methods for trapping phytoplasma vectors by attractive infochemicals. Bull Insect 64(Supplement)

    Google Scholar 

  • Hiruki C (1997) Paulownia witches’-broom disease important in East Asia. In: International symposium on urban tree health, vol 496. pp 63–68

    Google Scholar 

  • Hiruki C, da Rocha A (1986) Histochemical diagnosis of mycoplasma infections in Catharanthus roseus by means of a fluorescent DNA-binding agent, 4, 6-diamidino-2-phenylindole-2HCl (DAPI). Can J Plant Pathol 8(2):185–188

    Article  CAS  Google Scholar 

  • Hogenhout SA, Oshima K, AMMAR ED, Kakizawa S, Kingdom HN, Namba S (2008) Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9(4):403–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Davies DL, Van Wezel R, Ellerker BE, Morton A, Barbara D (2001) Expression of the immunodominant membrane protein of chlorantie-aster yellows phytoplasma in Nicotiana benthamiana from a potato virus X-based vector. Acta Hortic 1:409–416

    Article  Google Scholar 

  • Hoy CW, Heady SE, Koch TA (1992) Species composition, phenology, and possible origins of leafhoppers (Cicadellidae) in Ohio vegetable crops. J Econ Entomol 85(6):2336–2343

    Article  Google Scholar 

  • IRPCM (2004) ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54:1243–1255

    Article  CAS  Google Scholar 

  • Jarausch W, Danet JL, Labonne G, Dosba F, Broquaire JM, Saillard C, Garnier M (2001) Mapping the spread of apricot chlorotic leaf roll (ACLR) in southern France and implication of Cacopsylla pruni as a vector of European stone fruit yellows (ESFY) phytoplasmas. Plant Pathol 50(6):782–790

    Article  Google Scholar 

  • Jyothi G (2011) Molecular detection and characterization of phytoplasma causing phyllody in pigeonpea (Cajanus cajan (L) Millsp). MSc (Agri) thesis, University of Agricultural Sciences, Bangalore, India, p 82

    Google Scholar 

  • Kakizawa S, Oshima K, Namba S (2006a) Diversity and functional importance of phytoplasma membrane proteins. Trends Microbiol 14(6):254–256

    Article  CAS  PubMed  Google Scholar 

  • Kakizawa S, Oshima K, Ishii Y, Hoshi A, Maejima K, Jung HY, Namba S (2009) Cloning of immunodominant membrane protein genes of phytoplasmas and their in planta expression. FEMS Microbiol Lett 293(1):92–101

    Article  CAS  PubMed  Google Scholar 

  • Kakizawa S, Oshima K, Jung HY, Suzuki S, Nishigawa H, Arashida R, Namba S (2006b) Positive selection acting on a surface membrane protein of the plant-pathogenic phytoplasmas. J Bacteriol 188(9):3424–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehira T, Horikoshi N, Yamakita Y, Shinohara M (1996) Occurrence of hydrangea phyllody in Japan and detection of the causal phytoplasma. Jpn J Phytopathol 62(5):537–540

    Article  Google Scholar 

  • Kirkpatrick BC, Stenger DC, Morris TJ, Purcell AH (1987) Cloning and detection of DNA from a nonculturable plant pathogenic mycoplasma-like organisms. Science 238(4824):197–200

    Article  CAS  PubMed  Google Scholar 

  • Komori N (1966) Occurrence and control of rice yellow dwarf disease in Ibaraki Prefecture (in Japanese). Plant Prot 20:285–288

    Google Scholar 

  • Kuske CR, Kirkpatrick BC (1992) Phylogenetic relationships between the western aster yellows mycoplasmalike organism and other prokaryotes established by 16S rRNA gene sequence. Int J Syst Evol Microbiol 42(2):226–233

    CAS  Google Scholar 

  • Langer M, Darimont H, Maixner M (2003) Characterization of isolates of Vergilbungskrankheit phytoplasma by rflp analysis and their association with grapevine, herbaceous host plants and vectors. In: Proceedings of the 14th conference of the international council for the study of virus and virus-like diseases of the grapevine, Locorotondo, Italy, pp 12–17

    Google Scholar 

  • Leljak-Levanić D, Ježić M, Cesar V, Ludwig-Müller J, Lepeduš H, Mladinić M, Ćurković-Perica M (2010) Biochemical and epigenetic changes in phytoplasma-recovered periwinkle after indole-3-butyric acid treatment. J Appl Microbiol 109(6):2069–2078

    Article  CAS  PubMed  Google Scholar 

  • Lepka P, Stitt M, Moll E, Seemüller E (1999) Effect of phytoplasma infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol Mol Plant Pathol 55(1):59–68

    Article  CAS  Google Scholar 

  • Lingua G, D’Agostino G, Massa N, Antosiano M, Berta G (2002) Mycorrhiza-induced differential response to a yellows disease in tomato. Mycorrhiza 12(4):191–198

    Article  PubMed  Google Scholar 

  • Madden LV, Nault LR, Mural DJ, Apelt MR (1995) Spatial pattern analysis of the incidence of aster yellows disease in lettuce. Popul Ecol 37(2):279–289

    Article  Google Scholar 

  • Maloy OC (2005) Plant disease management. The Plant Health Instructor, p 10

    Google Scholar 

  • Manjunatha N (2010) Molecular detection and characterization of Sesame (Sesamum indicum L) phyllody phytoplasma. MSc (Agri) thesis, University Agricultural Science, Bengaluru, India, 70p

    Google Scholar 

  • Marcone C (2014) Molecular biology and pathogenicity of phytoplasmas. Ann Appl Biol 165(2):199–221

    Article  CAS  Google Scholar 

  • Marzachì C, Milne RG, Bosco D (2004) Phytoplasma-plant-vector-relationships. In: Pandalai SG (ed) Recent res development in plant pathology, vol 3. Res Signpost, Kerala, India, pp 211–241

    Google Scholar 

  • Marzorati M, Alma A, Sacchi L, Pajoro M, Palermo S, Brusetti L, Corona S (2006) A novel Bacteroidetes symbiont is localized in Scaphoideus titanus, the insect vector of flavescence dorée in Vitis vinifera. Appl Environ Microbiol 72(2):1467–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCoy RE, Caudwell A, Chang CJ, Chen TA, Chiykowski LN, Cousin MT, Dale JL, de Leeuw GTN, Golino DA, Hackett KJ, Kirkpatrick BC, Marwitz R, Petzold H, Sinha RC, Sugiura M, Whitecomb RF, Yang IL, Zhu BM, Seemüller E (1989) Plant diseases associated with mycoplasma like organisms. In: Whitcomb RF, Tully JG (eds) The mycoplasmas, vol 5. Academic Press, New York, pp 545–640

    Chapter  Google Scholar 

  • Mergenthaler E, Viczian O, Fodor M, Sule S (2001) Isolation and expression of an immunodominant membrane protein gene of the ESFY phytoplasma for antiserum production. Acta Hortic 1:355–360

    Article  Google Scholar 

  • Moya-Raygoza G, Nault LR (1998) Transmission biology of maize bushy stunt phytoplasma by the corn leafhopper (Homoptera: Cicadellidae). Ann Entomol Soc Am 91(5):668–676

    Article  Google Scholar 

  • Mural DJ, Nault LR, Hoy CW, Madden LV, Miller SA (1996) Effects of temperature and vector age on transmission of two Ohio strains of aster yellows phytoplasma by the aster leafhopper (Homoptera: Cicadellidae). J Econ Entomol 89(5):1223–1232

    Article  Google Scholar 

  • Musetti R, Favali MA (2004) Microscopy techniques applied to the study of phytoplasma diseases: traditional and innovative methods. Curr Issues Multidiscip Microsc Res Educ 2:72–80

    Google Scholar 

  • Musetti R, Grisan S, Polizzotto R, Martini M, Paduano C, Osler R (2011) Interactions between ‘Candidatus Phytoplasma mali’ and the apple endophyte Epicoccum nigrum in Catharanthus roseus plants. J Appl Microbiol 110(3):746–756

    Article  CAS  PubMed  Google Scholar 

  • Muthuswamy M, Subramanian N (1985) A new mycoplasmal disease in peanut (Arachis hypogaea L). Curr Sci 54:1193–1194

    Google Scholar 

  • Nagadhara D, Ramesh S, Pasalu IC, Rao YK, Sarma NP, Reddy VD, Rao KV (2004) Transgenic rice plants expressing the snowdrop lectin gene (gna) exhibit high-level resistance to the whitebacked planthopper (Sogatella furcifera). Theor Appl Genet 109(7):1399–1405

    Article  CAS  PubMed  Google Scholar 

  • Nakajima S, Nishimura N, Jung H, Kakizawa S, Fujisawa I, Nanba S, Tsuchizaki T (2009) Movement of onion yellows phytoplasma and Cryptotaenia japonica witches’ broom phytoplasma in the nonvector insect Nephotettix cincticeps. Jpn J Phytopathol (Japan) 75:29–34

    Article  Google Scholar 

  • Nakajima S, Nishimura N, Matsuda I, Shiomi T, Namba S, Tsuchizaki T (2002) Detection of mulberry dwarf and onion yellows phytoplasmas by PCR from vector insects and non vector insects. Jpn J Phytopathol 68(1):39–42

    Article  Google Scholar 

  • Nakamori K, Maezato T (1968) Control of sweet potato witches’ broom disease in Okinawa (in Japanese). Plant Prot 22:19–24

    Google Scholar 

  • Namba S, Oyaizu H, Kato S, Iwanami S, Tsuchizaki T (1993) Phylogenetic diversity of phytopathogenic mycoplasmalike organisms. Int J Syst Evol Microbiol 43(3):461–467

    CAS  Google Scholar 

  • Namba S, Yamashita S, doi Y, Yora K (1981) Direct fluorescence detection method (DFD method) for diagnosing yellows-type virus diseases and mycoplasma diseases of plants. Jpn J Phytopathol 47(2):258–263

    Article  Google Scholar 

  • Nicholls CI, Parrella M, Altieri MA (2001) The effects of a vegetational corridor on the abundance and dispersal of insect biodiversity within a northern California organic vineyard. Landsc Ecol 16(2):133–146

    Article  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):e63–e63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okashiram P, Bindra OS, Bakhetia DRC (1930) A note on the natural incidence of sesame phyllody virus in Brassica sp. at Ludhiana. J Res Punjab Agricul Univ 4:406–408

    Google Scholar 

  • Oshima K, Ishii Y, Kakizawa S, Sugawara K, Neriya Y, Himeno M, Namba S (2011) Dramatic transcriptional changes in an intracellular parasite enable host switching between plant and insect. PLoS One 6(8):e23242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal BP, Pushkarnath (1935) Phyllody a possible virus disease of sesamum. Indian J Agricul Sci 5:517–522

    Google Scholar 

  • Palermo S, Arzone A, Bosco D (2001) Vector-pathogen-host plant relationships of chrysanthemum yellows (CY) phytoplasma and the vector leafhoppers Macrosteles quadripunctulatus and Euscelidius variegatus. Entomol Exp Appl 99(3):347–354

    Article  Google Scholar 

  • Pallavi MS (2009) Molecular identification of chickpea (Cicer arietinum L) phyllody phytoplasma. MSc (Agri) thesis, University of Agricultural Sciences, Bengaluru, India, p 87

    Google Scholar 

  • Palmano S, Firrao G (2000) Diversity of phytoplasmas isolated from insects, determined by a DNA heteroduplex mobility assay and a length polymorphism of the 16S−23S rDNA spacer region analysis. J Appl Microbiol 89(5):744–750F

    Article  CAS  PubMed  Google Scholar 

  • Pecho L, Vizarova G (1990) Plant hormones in tissues of healthy and mycoplasma-infected currants. Ochrana Rostlin 26(3):181–186

    Google Scholar 

  • Phatak HC, Lundsgaard T, Padma R, Singh S, Verma VS (1975) Mycoplasma-like Bodies associated with Phyllody of Parthenium hysterophorus L. J Phytopathol 83(1):10–13

    Article  Google Scholar 

  • Poggi Pollini C, Giunchedi L, Bissani R (1997) Immunoenzymatic detection of PCR products for the identification of phytoplasmas in plants. J Phytopathol 145(8–9):371–374

    Article  Google Scholar 

  • Prati S, Maffi D, Longoni C, Chiesa SG, Bianco PA, Quaroni S (2005) Preliminary study on the effects of two SAR inducers and prohexadione calcium on the development of phytoplasmas in vinca. J Plant Pathol 87:303

    Google Scholar 

  • Purcell AH (1988) Increased survival of Dalbulus maidis, a specialist on maize, on non-host plants infected with mollicute plant pathogens. Entomol Exp Appl 46(2):187–196

    Article  Google Scholar 

  • Puterka GJ, Reinke M, Luvisi D, Ciomperik MA, Bartels D, Glenn DM (2003) Particle film, Surround WP, effects on glassy-winged sharpshooters behavior and its utility as a barrier to sharpshooter infestations in grape. Plant Health Progress 4(1):7

    Article  Google Scholar 

  • Queiroz RB, Donkersley P, Silva FN, Al-Mahmmoli IH, Al-Sadi AM, Carvalho CM, Elliot SL (2016) Invasive mutualisms between a plant pathogen and insect vectors in the Middle East and Brazil. R Soc Open Sci 3(12):160557

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramanatha Ayyer V, Balasubramanyan R (1933) Occurrence of sterile plants in Bengal gram. Madras Agricul J 21:392–393

    Google Scholar 

  • Rangaswamy KT, Suryanarayana V, Muniyappa V, Singh SJ (1988) Transmission of aster phyllody disease by Orosius albicinctus. Fitopatol Bras 13(4):361–364

    Google Scholar 

  • Rathnamma (2014) Studies on little leaf of brinjal caused by Candidatus Phytoplasma trifolii. MSc (Agri) thesis, University of Agricultural Science, Dharwad India, 25p

    Google Scholar 

  • Ravi KS (1983) Studies on pigeonpea (Cajanus cajan (L) Millsp) phyllody disease. MSc (Agri) thesis, University of Agricultural Science, Bengaluru India, 80p

    Google Scholar 

  • Reddy BB, Prasanthi L, Jayalaxmi RS, Saisruthi V, Shareef SM, Krishna TG (2014) First report of ‘Candidatus Phytoplasma aurantifolia’ associated with phyllody of blackgram in India. New Dis Rep 30(25):2044–0588

    Google Scholar 

  • Romanazzi G (2013) Perspectives for the management of phytoplasma diseases through induced resistance: what can we expect from resistance inducers. Phytopathog Mollicut 3(1):60–62

    Article  Google Scholar 

  • Romanazzi G, Musetti R, Marzachì C, Casati P (2009) Induction of resistance in the control of phytoplasma diseases. Petria 19(3):113–129

    Google Scholar 

  • Saha P, Dasgupta I, Das S (2006) A novel approach for developing resistance in rice against phloem limited viruses by antagonizing the phloem feeding hemipteran vectors. Plant Mol Biol 62(4–5):735–752

    Article  CAS  PubMed  Google Scholar 

  • Sameshima T (1967) Occurrence and control of rice yellow dwarf disease in Miyazaki Prefecture (in Japanese). Plant Prot 21:47–50

    Google Scholar 

  • Schneider B (1995) Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasma. Mol Diagn Proced Mycoplasmol 1:369–380

    Article  CAS  Google Scholar 

  • Seemüller E, Harries H (2009) Plant resistance—phytoplasmas: genomes, plant hosts and vectors. CAB International, Oxfordshire, UK, pp 147–169

    Book  Google Scholar 

  • Severin HHP (1946) Longevity, or life histories, of leafhopper species on virus infected and healthy plants. Hilgardia 17:121–133

    Article  Google Scholar 

  • Shinkai A (1964) Transmission of sweet potato witches’ broom disease by Orosius ryukyuensis (in Japanese). Plant Prot 18:259–262

    Google Scholar 

  • Shweta K (2014) Molecular characterization of aster Phyllody phytoplasma. MSc (Agri) thesis, University of Agricultural Science, Bengaluru, India, p 47

    Google Scholar 

  • Shyam R, Bhatnagar PS (1965) Phyllody in blackgram (Phaseolus mungo L.). Sci Culture 31:312–313

    Google Scholar 

  • Stitcher L, Mauch-Mani B, Métraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    Article  Google Scholar 

  • Strauss E (2009) Phytoplasma research begins to bloom. Science 325:388–390

    Article  CAS  PubMed  Google Scholar 

  • Sugawara K, Himeno M, Keima T, Kitazawa Y, Maejima K, Oshima K, Namba S (2012) Rapid and reliable detection of phytoplasma by loop-mediated isothermal amplification targeting a housekeeping gene. J Gen Plant Pathol 78(6):389–397

    Article  CAS  Google Scholar 

  • Suzuki S, Kenro O, Shigeyuki K, Ryo A, Hee-Young J, Yasuyuki Y, Hisashi N, Masashi U, Shigetou N (2006) Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proc Natl Acad Sci 103(11):4252–4257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swathi PS (2015) Molecular Detection and Characterization of Grain Amaranth Phyllody Phytoplasma. MSc (Agri) thesis, University of Agricultural Science, Bengaluru, India, p 79

    Google Scholar 

  • Swenson KG (1971) Relation of age, sex, and mating of macrosteles fascifrons to transmission of aster yellows. Phytopathology 61:657–659

    Article  Google Scholar 

  • Takinami Y, Maejima K, Takahashi A, Keima T, Shiraishi T, Okano Y, Namba S (2013) First report of ‘Candidatus Phytoplasma asteris’ infecting hydrangea showing phyllody in Japan. J Gen Plant Pathol 79(3):209–213

    Article  Google Scholar 

  • Teixeira DC, Wulff NA, Martins EC, Kitajima EW, Bassanezi R, Ayres AJ, Eveillard S, Saillard C, Bové JM (2009) A phytoplasma related to ‘Candidatus Phytoplasma asteris’ detected in citrus showing huanglongbing (yellow shoot disease) symptoms in Guangdong, P R China. Phytopathology 99:236–242

    Article  CAS  Google Scholar 

  • Tomlinson JA, Boonham N, Dickinson M (2010) Development and evaluation of a one-hour DNA extraction and loop-mediated isothermal amplification assay for rapid detection of phytoplasmas. Plant Pathol 59(3):465–471

    Article  CAS  Google Scholar 

  • Tubajika KM, Civerolo EL, Puterka GJ, Hashim JM, Luvisi DA (2007) The effects of kaolin, harpin, and imidacloprid on development of Pierce’s disease in grape. Crop Prot 26(2):92–99

    Article  CAS  Google Scholar 

  • Vasudeva RS, Sahambi HS (1955) Phyllody in sesamum (Sesamum orientale L). Indian Phytopathol 8:124–129

    Google Scholar 

  • Wang K, Hiruki C (2000) Heteroduplex mobility assay detects DNA mutations for differentiation of closely related phytoplasma strains. J Microbiol Methods 41(1):59–68

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Hiruki C (2001) Molecular characterization and classification of phytoplasmas associated with canola yellows and a new phytoplasma strain associated with dandelions. Plant Dis 85(1):76–79

    Article  CAS  PubMed  Google Scholar 

  • Weintraub PG (2007) Insect vectors of phytoplasmas and their control. An update. Bull Insectol 60(2):169

    Google Scholar 

  • Weintraub PG, Beanland L (2006) Insect vectors of phytoplasmas. Annu Rev Entomol 51:91–111

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Ding Y, Wei W, Davis RE, Lee IM, Hammond RW, Zhao Y (2012) Salicylic acid-mediated elicitation of tomato defence against infection by potato purple top phytoplasma. Ann Appl Biol 161(1):36–45

    Article  CAS  Google Scholar 

  • Yamini C, Tiwari AK, Upadhyaya PP, Prabhuji SK, Rao GP (2009) Association of Candidatus Phytoplasma asteris with little leaf and Phyllody disease of Catharanthus roseus on eastern Uttar Pradesh, India. Med Plants 1(2):103–108

    Google Scholar 

  • Yue HN, Wu YF, Shi YZ, Wu KK, Li YR (2008) First report of paulownia witches’-broom phytoplasma in China. Plant Dis 92(7):1134–1134

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Hogenhout SA, Nault LR, Hoy CW, Miller SA (2004) Molecular and symptom analyses of phytoplasma strains from lettuce reveal a diverse population. Phytopathology 94(8):842–849

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the authorities of University of Agricultural Sciences and Indian Institute of Horticultural Research, Bangalore, for encouragement and facilities. Select figures in this chapter have been taken from published sources, and the authors and the editor are thankful to the publishers, editors, and contributors of the publications.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagaraju, N., Kavyashri, V.V., Chakravarthy, A.K., Onkara Naik, S., Thimmanna (2020). Insect Vectors of Phytoplasma Diseases in the Tropics: Molecular Biology and Sustainable Management. In: Chakravarthy, A. (eds) Innovative Pest Management Approaches for the 21st Century. Springer, Singapore. https://doi.org/10.1007/978-981-15-0794-6_15

Download citation

Publish with us

Policies and ethics