Skip to main content

Exponential Mixing: Lectures from Mumbai

  • Chapter
  • First Online:
Geometric and Ergodic Aspects of Group Actions

Part of the book series: Infosys Science Foundation Series ((ISFM))

Abstract

We discuss a number of results related to mixing and, in particular, to the rate of mixing. This is sometimes alternatively known as the rate of decay of correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This doesn’t have finitely many branches but the same basic analysis applies.

  2. 2.

    Actually, one needs a slightly weaker assumption: There exists \(\varepsilon > 0\) and (an arbitrary large) n such that \(T^n :X \rightarrow X\) has inverse branches \(T_i, T_j :X \rightarrow X\) (i.e. locally \(T^n \circ T_i =\) identity and \(T^n \circ T_j =\) identity) and \(R_{ij} := r(T_i x) - r(T_jx)\) satisfies \(|R^\prime _{ij}(x)| \ge \varepsilon \).

  3. 3.

    In the detailed proof there remains a complicated technical argument to get bounds of iterates of the operator and thus the spectral radius.

References

  1. A. Avila, S. Gouzel and J.-C. Yoccoz, Exponential mixing for the Teichmller flow. Publ. Math. Inst. Hautes tudes Sci. No. 104 (2006), 143–211.

    Article  Google Scholar 

  2. V. Baladi and B. Vallée, Exponential decay of correlations for surface semi-flows without finite Markov partitions. Proc. Amer. Math. Soc. 133 (2005), no. 3, 865–874.

    Article  MathSciNet  Google Scholar 

  3. V. Baladi and B. Vallée, Euclidean algorithms are Gaussian. J. Number Theory 110 (2005), no. 2, 331–386

    Article  MathSciNet  Google Scholar 

  4. R. Bowen, Invariant measures for Markov maps of the interval (With an afterword by Roy L. Adler and additional comments by Caroline Series) Comm. Math. Phys. 69 (1979), no. 1, 1–17

    Article  MathSciNet  Google Scholar 

  5. P. Collet and J.-P. Eckmann, Iterated maps on the interval as dynamical systems. Progress in Physics, 1. Birkhuser, Boston, Mass., 1980.

    Google Scholar 

  6. W. Doeblin and R. Fortet, Sur des chanes à liaisons complètes, Bull. Soc. Math. France 65 (1937), 132–148.

    Article  MathSciNet  Google Scholar 

  7. D. Dolgopyat, On decay of correlations in Anosov flows. Ann. of Math. (2) 147 (1998), no. 2, 357–390.

    Article  MathSciNet  Google Scholar 

  8. D. Dolgopyat, On mixing properties of compact group extensions of hyperbolic systems, Israel J. Math. 130 (2002) 157–205.

    Article  MathSciNet  Google Scholar 

  9. D. Hensley, Continued fractions, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006.

    Book  Google Scholar 

  10. H. Huber, Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen, Math. Ann. 138 1959 1–26.

    Article  MathSciNet  Google Scholar 

  11. C.T. Ionescu Tulcea and G. Marinescu, Théorie ergodique pour des classes d’opérations non complètement continues, Ann. of Math. (2) 52, (1950). 140–147.

    Google Scholar 

  12. Donald E. Knuth, The art of computer programming, Vol. 2. Seminumerical algorithms, Addison-Wesley, Reading, MA, 2011.

    Google Scholar 

  13. A. Lasota and J. Yorke, On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1973) 481–488

    Article  MathSciNet  Google Scholar 

  14. F. Ledrappier and S. Lim, Local Limit Theorem in negative curvature, Preprint.

    Google Scholar 

  15. J. Lee and H.-S. Sun, Another note on “Euclidean algorithms are Gaussian” by V. Baladi and B. Valle, Acta Arith. 188 (2019), 241–251.

    Google Scholar 

  16. C. Liverani, On contact Anosov flows. Ann. of Math. (2) 159 (2004), no. 3, 1275–1312.

    Article  MathSciNet  Google Scholar 

  17. F. Naud, Dolgopyat’s estimates for the modular surface, lecture notes from IHP June 2005, workshop “time at work”.

    Google Scholar 

  18. W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astrisque, 187–188, (1990) 268

    MathSciNet  MATH  Google Scholar 

  19. M. Pollicott and R. Sharp, Exponential error terms for growth functions on negatively curved surfaces. Amer. J. Math. 120 (1998) 1019–1042

    Article  MathSciNet  Google Scholar 

  20. M. Reed and B. Simon, Methods of modern mathematical physics. I, Functional analysis. Academic Press, Inc., New York, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Pollicott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pollicott, M. (2019). Exponential Mixing: Lectures from Mumbai. In: Dani, S., Ghosh, A. (eds) Geometric and Ergodic Aspects of Group Actions. Infosys Science Foundation Series(). Springer, Singapore. https://doi.org/10.1007/978-981-15-0683-3_4

Download citation

Publish with us

Policies and ethics