Skip to main content
Book cover

Solar Energy pp 373–423Cite as

Interfacial Materials for Organic Solar Cells

  • Chapter
  • First Online:

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Organic solar cell (OSC) is one of the promising photovoltaic technology for next generation low-cost renewable energy sources. The power conversion efficiencies (PCE) of OSCs have reached above 14% in single-junction and ~17% in tandem OSCs. This rapid increase in the performance is mostly profited from the synergetic advances in rational molecular design, device processing and interfacial layer modifications. In addition to the development of efficient photoactive materials, interfacial design plays a crucial role in the improvement of device performance and stability. Most importantly, the interfacial layer is responsible for establishing good ohmic contact in the device, thus minimize the resistance, interfacial recombination and improve charge selectivity. In this chapter, we present the recent development in the electron and hole transporting interfacial materials design for both single-junction and tandem OSCs. Special attention will be paid to the design principles of interfacial materials which includes inorganic metal oxides, composite materials, oligomeric and polymeric molecules and their use as cathode and anode interlayer for high efficiency devices. The structure-property relationships of various interfacial materials will be analyzed as an approach towards high performance OSCs. Finally, we will discuss the current challenges with possible solutions and perspectives for performance enhancement in OSCs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aryal UK, Chakravarthi N, Park H-Y, Bae H, Jin S-H, Gal Y-S (2018) Highly efficient polyacetylene–based polyelectrolytes as cathode interfacial layers for organic solar cell applications. Org Electron 53:265–272

    Article  CAS  Google Scholar 

  • Baek S-W, Park G, Noh J, Cho C, Lee C-H, Seo M-K, Song H, Lee J-Y (2014) Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells. ACS Nano 8(4):3302–3312

    Article  CAS  Google Scholar 

  • Bao X, Sun L, Shen W, Yang C, Chen W, Yang R (2014) Facile preparation of TiOX film as an interface material for efficient inverted polymer solar cells. J Mater Chem A 2(6):1732–1737

    Article  CAS  Google Scholar 

  • Bilby D, Frieberg B, Kramadhati S, Green P, Kim J (2014) Design considerations for electrode buffer layer materials in polymer solar cells. ACS Appl Mater Interfaces 6(17):14964–14974

    Article  CAS  Google Scholar 

  • Bjuggren JM, Sharma A, Gedefaw D, Elmas S, Pan C, Kirk B, Zhao X, Andersson G, Andersson MR (2018) Facile synthesis of an efficient and robust cathode interface material for polymer solar cells. ACS Appl Energy Mater 1(12):7130–7139

    Article  CAS  Google Scholar 

  • Bob B, Song T-B, Chen C-C, Xu Z, Yang Y (2013) Nanoscale dispersions of gelled SnO2: material properties and device applications. Chem Mater 25(23):4725–4730

    Article  CAS  Google Scholar 

  • Chan MY, Lee CS, Lai SL, Fung MK, Wong FL, Sun HY, Lau KM, Lee ST (2006) Efficient organic photovoltaic devices using a combination of exciton blocking layer and anodic buffer layer. J Appl Phys 100(9):094506

    Article  CAS  Google Scholar 

  • Chang Y-M, Zhu R, Richard E, Chen C-C, Li G, Yang Y (2012) Electrostatic self-assembly conjugated polyelectrolyte-surfactant complex as an interlayer for high performance polymer solar cells. Adv Funct Mater 22(15):3284–3289

    Article  CAS  Google Scholar 

  • Chen L-M, Xu Z, Hong Z, Yang Y (2010) Interface investigation and engineering—achieving high performance polymer photovoltaic devices. J Mater Chem 20:2575–2598

    Article  Google Scholar 

  • Chen Q, Worfolk BJ, Hauger TC, Al-Atar U, Harris KD, Buriak JM (2011) Finely tailored performance of inverted organic photovoltaics through layer-by-layer interfacial engineering. ACS Appl Mater Interfaces 3(10):3962–3970

    Article  CAS  Google Scholar 

  • Chen S, Small CE, Amb CM, Subbiah J, Lai T-h, Tsang S-W, Manders JR, Reynolds JR, So F (2012) Inverted polymer solar cells with reduced interface recombination. Adv Energy Mater 2(11):1333–1337

    Article  CAS  Google Scholar 

  • Chen D, Zhou H, Cai P, Sun S, Ye H, Su S-J, Cao Y (2014) A water-processable organic electron-selective layer for solution-processed inverted organic solar cells. Appl Phys Lett 104(5):053304

    Article  CAS  Google Scholar 

  • Chen J-D, Cui C, Li Y-Q, Zhou L, Ou Q-D, Li C, Li Y, Tang J-X (2015) Single-junction polymer solar cells exceeding 10% power conversion efficiency. Adv Mater 27(6):1035–1041

    Article  CAS  Google Scholar 

  • Chen W, Lv J, Han J, Chen Y, Jia T, Li F, Wang Y (2016) N-Type cathode interlayer based on dicyanomethylenated quinacridone derivative for high-performance polymer solar cells. J Mater Chem A 4(6):2169–2177

    Article  CAS  Google Scholar 

  • Choi H, Kim H-B, Ko S-J, Kim JY, Heeger AJ (2015) An organic surface modifier to produce a high work function transparent electrode for high performance polymer solar cells. Adv Mater 27(5):892–896

    Article  CAS  Google Scholar 

  • Chueh C-C, Li C-Z, Jen AKY (2015) Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ Sci 8(4):1160–1189

    Article  CAS  Google Scholar 

  • Cui Y, Xu B, Yang B, Yao H, Li S, Hou J (2016) A novel pH neutral self-doped polymer for anode interfacial layer in efficient polymer solar cells. Macromolecules 49(21):8126–8133

    Article  CAS  Google Scholar 

  • Dkhil SB, Duché D, Gaceur M, Thakur AK, Aboura FB, Escoubas L, Simon J-J, Guerrero A, Bisquert J, Garcia-Belmonte G, Bao Q, Fahlman M, Videlot-Ackermann C, Margeat O, Ackermann J (2014) Interplay of optical, morphological, and electronic effects of ZnO optical spacers in highly efficient polymer solar cells. Adv Energy Mater 4(18):1400805

    Article  CAS  Google Scholar 

  • Drijkoningen J, Kesters J, Vangerven T, Bourgeois E, Lutsen L, Vanderzande D, Maes W, D’Haen J, Manca J (2014) Investigating the role of efficiency enhancing interlayers for bulk heterojunction solar cells by scanning probe microscopy. Org Electron 15(6):1282–1289

    Article  CAS  Google Scholar 

  • Duan C, Zhong C, Liu C, Huang F, Cao Y (2012) Highly efficient inverted polymer solar cells based on an alcohol soluble fullerene derivative interfacial modification material. Chem Mater 24(9):1682–1689

    Article  CAS  Google Scholar 

  • Duan C, Cai W, Hsu BBY, Zhong C, Zhang K, Liu C, Hu Z, Huang F, Bazan GC, Heeger AJ, Cao Y (2013a) Toward green solvent processable photovoltaic materials for polymer solar cells: the role of highly polar pendant groups on charge carrier transport and photovoltaic behavior. Energy Environ Sci 6:3022–3034

    Article  CAS  Google Scholar 

  • Duan C, Zhang K, Guan X, Zhong C, Xie H, Huang F, Chen J, Peng J, Cao Y (2013b) Conjugated zwitterionic polyelectrolyte-based interface modification materials for high performance polymer optoelectronic devices. Chem Sci 4:1298–1307

    Article  CAS  Google Scholar 

  • Duan C, Zhang K, Zhong C, Huang F, Cao Y (2013c) Recent advances in water/alcohol-soluble π-conjugated materials: new materials and growing applications in solar cells. Chem Soc Rev 42(23):9071–9104

    Article  CAS  Google Scholar 

  • Fan P, Zheng Y, Song J, Yu J (2017) N-type small molecule as an interfacial modification layer for efficient inverted polymer solar cells. Sol Energy 158:278–284

    Article  CAS  Google Scholar 

  • Fitzner R, Reinold E, Mishra A, Mena-Osteritz E, Ziehlke H, Körner C, Leo K, Riede M, Weil M, Tsaryova O, Weiß A, Uhrich C, Pfeiffer M, Bäuerle P (2011) Dicyanovinyl-substituted oligothiophenes: structure-property relationships and application in vacuum-processed small molecule organic solar cells. Adv Funct Mater 21(5):897–910

    Article  CAS  Google Scholar 

  • Fitzner R, Mena-Osteritz E, Mishra A, Schulz G, Reinold E, Weil M, Körner C, Ziehlke H, Elschner C, Leo K, Riede M, Pfeiffer M, Uhrich C, Bäuerle P (2012) Correlation of π-conjugated oligomer structure with film morphology and organic solar cell performance. J Am Chem Soc 134(27):11064–11067

    Article  CAS  Google Scholar 

  • Fu P, Guo X, Wang S, Ye Y, Li C (2017) Aminosilane as a molecular linker between the electron-transport layer and active layer for efficient inverted polymer solar cells. ACS Appl Mater Interfaces 9(15):13390–13395

    Article  CAS  Google Scholar 

  • Gadisa A, Hairfield T, Alibabaei L, Donley CL, Samulski ET, Lopez R (2013) Solution processed al-doped ZnO nanoparticles/tiox composite for highly efficient inverted organic solar cells. ACS Appl Mater Interfaces 5(17):8440–8445

    Article  CAS  Google Scholar 

  • Gommans H, Verreet B, Rand BP, Muller R, Poortmans J, Heremans P, Genoe J (2008) On the role of bathocuproine in organic photovoltaic cells. Adv Funct Mater 18(22):3686–3691

    Article  CAS  Google Scholar 

  • Guo J, Ren G, Han W, Sun Y, Wang M, Zhou Y, Shen L, Guo W (2019) Facilitating electron extraction of inverted polymer solar cells by using organic/inorganic/organic composite buffer layer. Org Electron 68:187–192

    Article  CAS  Google Scholar 

  • Hains AW, Ramanan C, Irwin MD, Liu J, Wasielewski MR, Marks TJ (2010) Designed bithiophene-based interfacial layer for high-efficiency bulk-heterojunction organic photovoltaic cells. Importance of Interfacial Energy Level Matching. ACS Appl Mater Interfaces 2(1):175–185

    Google Scholar 

  • Han C, Cheng Y, Chen L, Qian L, Yang Z, Xue W, Zhang T, Yang Y, Cao W (2016) Enhanced performance of inverted polymer solar cells by combining ZnO nanoparticles and poly[(9,9-bis(3′-(N, N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyfluorene)] as electron transport layer. ACS Appl Mater Interfaces 8(5):3301–3307

    Article  CAS  Google Scholar 

  • Hau SK, Yip H-L, Baek NS, Zou J, O’Malley K, Jen AKY (2008) Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl Phys Lett 92(25):253301–253303

    Article  CAS  Google Scholar 

  • Hau SK, O’Malley KM, Cheng Y, Yip H, Ma H, Jen AK (2010) Optimization of active layer and anode electrode for high-performance inverted bulk-heterojunction solar cells. IEEE J Sel Top Quantum Electron 16(6):1665–1675

    Article  CAS  Google Scholar 

  • He Z, Zhang C, Xu X, Zhang L, Huang L, Chen J, Wu H, Cao Y (2011a) Largely enhanced efficiency with a PFN/Al bilayer cathode in high efficiency bulk heterojunction photovoltaic cells with a low bandgap polycarbazole donor. Adv Mater 23(27):3086–3089

    Article  CAS  Google Scholar 

  • He Z, Zhong C, Huang X, Wong W-Y, Wu H, Chen L, Su S, Cao Y (2011b) Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv Mater 23(40):4636–4643

    Article  CAS  Google Scholar 

  • He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photon 6:591–595

    Article  CAS  Google Scholar 

  • Hiramoto M, Suemori K, Matsumura Y, Miyata T, Yokoyama M (2006) P-I-N junction organic solar cells. Mol Cryst Liq Cryst 455:267–275

    Article  CAS  Google Scholar 

  • Hu X, Yi C, Wang M, Hsu C-H, Liu S, Zhang K, Zhong C, Huang F, Gong X, Cao Y (2014) High-performance inverted organic photovoltaics with over 1-μm thick active layers. Adv Energy Mater 4(15):1400378

    Article  CAS  Google Scholar 

  • Hu Z, Zhang F, An Q, Zhang M, Ma X, Wang J, Zhang J, Wang J (2018) Ternary nonfullerene polymer solar cells with a power conversion efficiency of 11.6% by inheriting the advantages of binary cells. ACS Energy Lett 3(3):555–561

    Google Scholar 

  • Huang F, Wu H, Wang D, Yang W, Cao Y (2004) Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chem Mater 16(4):708–716

    Article  CAS  Google Scholar 

  • Huang L, Chen L, Huang P, Wu F, Tan L, Xiao S, Zhong W, Sun L, Chen Y (2016) Triple dipole effect from self-assembled small-molecules for high performance organic photovoltaics. Adv Mater 28(24):4852–4860

    Article  CAS  Google Scholar 

  • Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ (2008) p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc Nat Acad Sci 105(8):2783–2787

    Article  Google Scholar 

  • Jheng J-F, Lai Y-Y, Wu J-S, Chao Y-H, Wang C-L, Hsu C-S (2013) Influences of the non-covalent interaction strength on reaching high solid-state order and device performance of a low bandgap polymer with axisymmetrical structural units. Adv Mater 25(17):2445–2451

    Article  CAS  Google Scholar 

  • Jiang F, Choy WCH, Li X, Zhang D, Cheng J (2015) Post-treatment-free solution-processed non-stoichiometric NiOx nanoparticles for efficient hole-transport layers of organic optoelectronic devices. Adv Mater 27(18):2930–2937

    Article  CAS  Google Scholar 

  • Jørgensen M, Norrman K, Gevorgyan SA, Tromholt T, Andreasen B, Krebs FC (2012) Stability of polymer solar cells. Adv Mater 24(5):580–612

    Article  CAS  Google Scholar 

  • Kang H, Hong S, Lee J, Lee K (2012) Electrostatically self-assembled nonconjugated polyelectrolytes as an ideal interfacial layer for inverted polymer solar cells. Adv Mater 24(22):3005–3009

    Article  CAS  Google Scholar 

  • Kesters J, Ghoos T, Penxten H, Drijkoningen J, Vangerven T, Lyons DM, Verreet B, Aernouts T, Lutsen L, Vanderzande D, Manca J, Maes W (2013) Imidazolium-substituted polythiophenes as efficient electron transport materials improving photovoltaic performance. Adv Energy Mater 3(9):1180–1185

    Article  CAS  Google Scholar 

  • Kim JB, Ahn S, Kang SJ, Nuckolls C, Loo Y-L (2013) Ligand chemistry of titania precursor affects transient photovoltaic behavior in inverted organic solar cells. Appl Phys Lett 102(10):103302

    Article  CAS  Google Scholar 

  • Kim HI, Bui TTT, Kim G-W, Kang G, Shin WS, Park T (2014) A benzodithiophene-based novel electron transport layer for a highly efficient polymer solar cell. ACS Appl Mater Interfaces 6(18):15875–15880

    Article  CAS  Google Scholar 

  • Kim G, Kong J, Kim J, Kang H, Back H, Kim H, Lee K (2015) Overcoming the light-soaking problem in inverted polymer solar cells by introducing a heavily doped titanium sub-oxide functional layer. Adv Energy Mater 5(3):1401298

    Article  CAS  Google Scholar 

  • Kyaw AKK, Sun XW, Jiang CY, Lo GQ, Zhao DW, Kwong DL (2008) An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer. Appl Phys Lett 93(22):221107

    Article  CAS  Google Scholar 

  • Kyaw AKK, Wang DH, Gupta V, Zhang J, Chand S, Bazan GC, Heeger AJ (2013) Efficient solution-processed small-molecule solar cells with inverted structure. Adv Mater 25(17):2397–2402

    Article  CAS  Google Scholar 

  • Lai T-H, Tsang S-W, Manders JR, Chen S, So F (2013) Properties of interlayer for organic photovoltaics. Mater Today 16(11):424–432

    Article  CAS  Google Scholar 

  • Lai Y-Y, Cheng Y-J, Hsu CS (2014) Applications of functional fullerene materials in polymer solar cells. Energy Environ Sci 7:1866–1883

    Article  CAS  Google Scholar 

  • Lee K, Kim JY, Park SH, Kim SH, Cho S, Heeger AJ (2007) Air-stable polymer electronic devices. Adv Mater 19(18):2445–2449

    Article  CAS  Google Scholar 

  • Lee BH, Jung IH, Woo HY, Shim H-K, Kim G, Lee K (2014a) Multi-charged conjugated polyelectrolytes as a versatile work function modifier for organic electronic devices. Adv Funct Mater 24(8):1100–1108

    Article  CAS  Google Scholar 

  • Lee BR, Jung ED, Nam YS, Jung M, Park JS, Lee S, Choi H, Ko S-J, Shin NR, Kim Y-K, Kim SO, Kim JY, Shin H-J, Cho S, Song MH (2014b) Amine-based polar solvent treatment for highly efficient inverted polymer solar cells. Adv Mater 26(3):494–500

    Article  CAS  Google Scholar 

  • Lee J-H, Jeong SY, Kim G, Park B, Kim J, Kee S, Kim B, Lee K (2018) Reinforcing the built-in field for efficient charge collection in polymer solar cells. Adv Funct Mater 28(10):1705079

    Article  CAS  Google Scholar 

  • Li G, Chu C-W, Shrotriya V, Huang J, Yang Y (2006) Efficient inverted polymer solar cells. Appl Phys Lett 88(25):253503

    Article  CAS  Google Scholar 

  • Li S, Lei M, Lv M, Watkins SE, Za Tan, Zhu J, Hou J, Chen X, Li Y (2013) [6,6]-Phenyl-C61-butyric acid dimethylamino ester as a cathode buffer layer for high-performance polymer solar cells. Adv Energy Mater 3(12):1569–1574

    Article  CAS  Google Scholar 

  • Li N, Baran D, Spyropoulos GD, Zhang H, Berny S, Turbiez M, Ameri T, Krebs FC, Brabec CJ (2014a) Environmentally printing efficient organic tandem solar cells with high fill factors: a guideline towards 20% power conversion efficiency. Adv Energy Mater 4(11):1400084

    Article  CAS  Google Scholar 

  • Li P, Sun C, Jiu T, Wang G, Li J, Li X, Fang J (2014b) High-performance inverted solar cells based on blend films of ZnO naoparticles and TiO2 nanorods as a cathode buffer layer. ACS Appl Mater Interfaces 6(6):4074–4080

    Article  CAS  Google Scholar 

  • Li X, Xie F, Zhang S, Hou J, Choy WCH (2014c) Over 1.1 eV workfunction tuning of cesium intercalated metal oxides for functioning as both electron and hole transport layers in organic optoelectronic devices. Adv Funct Mater 24(46):7348–7356

    Google Scholar 

  • Li Z, Yang D, Zhao X, Li Z, Zhang T, Wu F, Yang X (2016) New PDI-based small-molecule cathode interlayer material with strong electron extracting ability for polymer solar cells. RSC Adv 6(103):101645–101651

    Article  CAS  Google Scholar 

  • Li X, Zhang W, Usman K, Fang J (2018a) Small molecule interlayers in organic solar cells. Adv Energy Mater 8(28):1702730

    Article  CAS  Google Scholar 

  • Li Z, Liu C, Zhang X, Guo J, Zhang X, Guo W (2018b) Boosting electron extraction in polymer solar cells by introducing a N-Type organic semiconductor interface layer. J Phys Chem C 122(1):207–215

    Article  CAS  Google Scholar 

  • Li Y, Zheng N, Yu L, Wen S, Gao C, Sun M, Yang R (2019) A simple phenyl group introduced at the tail of alkyl side chains of small molecular acceptors: new strategy to balance the crystallinity of acceptors and miscibility of bulk heterojunction enabling highly efficient organic solar cells. Adv Mater 31(12):1807832

    Article  CAS  Google Scholar 

  • Liao S-H, Jhuo H-J, Cheng Y-S, Chen S-A (2013) Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv Mater 25(34):4766–4771

    Article  CAS  Google Scholar 

  • Liao S-H, Jhuo H-J, Yeh P-N, Cheng Y-S, Li Y-L, Lee Y-H, Sharma S, Chen S-A (2014) Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dual-doped zinc oxide nano-film as cathode interlayer. Sci Rep 4:6813. https://doi.org/10.1038/srep06813

  • Lin Z, Jiang C, Zhu C, Zhang J (2013) Development of inverted organic solar cells with TiO2 interface layer by using low-temperature atomic layer deposition. ACS Appl Mater Interfaces 5(3):713–718

    Article  CAS  Google Scholar 

  • Lin Y, Zhang Z-G, Bai H, Wang J, Yao Y, Li Y, Zhu D, Zhan X (2015) High-performance fullerene-free polymer solar cells with 6.31% efficiency. Energy Environ Sci 8:610–616

    Article  CAS  Google Scholar 

  • Liu J, Shao S, Fang G, Meng B, Xie Z, Wang L (2012a) High-efficiency inverted polymer solar cells with transparent and work-function tunable MoO3-Al composite film as cathode buffer layer. Adv Mater 24(20):2774–2779

    Article  CAS  Google Scholar 

  • Liu J, Shao S, Meng B, Fang G, Xie Z, Wang L, Li X (2012b) Enhancement of inverted polymer solar cells with solution-processed ZnO-TiOX composite as cathode buffer layer. Appl Phys Lett 100(21):213906

    Article  CAS  Google Scholar 

  • Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H (2014) Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun 5:5293

    Article  CAS  Google Scholar 

  • Liu Y, Page Z, Ferdous S, Liu F, Kim P, Emrick T, Russell T (2015a) Dual functional zwitterionic fullerene interlayer for efficient inverted polymer solar cells. Adv Energy Mater 5(14):1500405

    Article  CAS  Google Scholar 

  • Liu Y, Page ZA, Russell TP, Emrick T (2015b) Finely tuned polymer interlayers enhance solar cell efficiency. Angew Chem Int Ed 54(39):11485–11489

    Article  CAS  Google Scholar 

  • Liu X, Li X, Li Y, Song C, Zhu L, Zhang W, Wang H-Q, Fang J (2016a) High-performance polymer solar cells with PCE of 10.42% via Al-Doped ZnO cathode interlayer. Adv Mater 28(34):7405–7412

    Google Scholar 

  • Liu Z, Ouyang X, Peng R, Bai Y, Mi D, Jiang W, Facchetti A, Ge Z (2016b) Efficient polymer solar cells based on the synergy effect of a novel non-conjugated small-molecule electrolyte and polar solvent. J Mater Chem A 4(7):2530–2536

    Article  CAS  Google Scholar 

  • Liu Z, Li W, Peng R, Jiang W, Guan Q, Lei T, Yang R, Islam A, Wei Q, Ge Z (2017) Benzophenone-based small molecular cathode interlayers with various polar groups for efficient polymer solar cells. J Mater Chem A 5(21):10154–10160

    Article  CAS  Google Scholar 

  • Liu Y, Liu G, Xie R, Wang Z, Zhong W, Li Y, Huang F, Cao Y (2018) A rational design and synthesis of cross-conjugated small molecule acceptors approaching high-performance fullerene-free polymer solar cells. Chem Mater 30(13):4331–4342

    Article  CAS  Google Scholar 

  • Lu K, Yuan J, Peng J, Huang X, Cui L, Jiang Z, Wang H-Q, Ma W (2013) New solution-processable small molecules as hole-transporting layer in efficient polymer solar cells. J Mater Chem A 1(45):14253–14261

    Article  CAS  Google Scholar 

  • Ma H, Yip H-L, Huang F, Jen AK-Y (2010) Interface engineering for organic electronics. Adv Funct Mater 20(9):1371–1388

    Article  CAS  Google Scholar 

  • MacLeod BA, Tremolet de Villers BJ, Schulz P, Ndione PF, Kim H, Giordano AJ, Zhu K, Marder SR, Graham S, Berry JJ, Kahn A, Olson DC (2015) Stability of inverted organic solar cells with ZnO contact layers deposited from sol-gel precursors. Energy Environ Sci 8(2):592–601

    Article  CAS  Google Scholar 

  • Manders JR, Tsang S-W, Hartel MJ, Lai T-H, Chen S, Amb CM, Reynolds JR, So F (2013) Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv Funct Mater 23(23):2993–3001

    Article  CAS  Google Scholar 

  • Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip H-L, Cao Y, Chen Y (2018) Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361(6407):1094–1098

    Google Scholar 

  • Miao Y, Yu H, Zhang Y, Yan X, Zhang J, Wang Y (2018) Efficient polymer solar cells based on a cathode interlayer of dicyanomethylenated indacenodithiophene derivative with large π-conjugation and electron-deficient properties. J Mater Chem C 6(1):57–65

    Article  CAS  Google Scholar 

  • Mihailetchi VD, Blom PWM, Hummelen JC, Rispens MT (2003) Cathode dependence of the open-circuit voltage of polymer: fullerene bulk heterojunction solar cells. J Appl Phys 94(10):6849–6854

    Article  CAS  Google Scholar 

  • Min J, Zhang H, Stubhan T, Luponosov YN, Kraft M, Ponomarenko SA, Ameri T, Scherf U, Brabec CJ (2013) A combination of Al-doped ZnO and a conjugated polyelectrolyte interlayer for small molecule solution-processed solar cells with an inverted structure. J Mater Chem A 1(37):11306–11311

    Article  CAS  Google Scholar 

  • Min J, Bronnbauer C, Zhang Z-G, Cui C, Luponosov YN, Ata I, Schweizer P, Przybilla T, Guo F, Ameri T, Forberich K, Spiecker E, Bäuerle P, Ponomarenko SA, Li Y, Brabec CJ (2016) Fully solution-processed small molecule semitransparent solar cells: optimization of transparent cathode architecture and four absorbing layers. Adv Funct Mater 26(25):4543–4550

    Article  CAS  Google Scholar 

  • Mishra A, Bäuerle P (2012) Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew Chem Int Ed 51(9):2020–2067

    Article  CAS  Google Scholar 

  • Mishra A, Sahu SN (2019) Fullerene-Free Molecular Acceptors for Organic Photovoltaics. In: Tyagi H, Agarwal AK, Chakraborty PR, S. Powar (eds) Advances in Solar Energy Research, Energy, Environment, and Sustainability. Springer Nature, Singapore Pte Ltd., pp 221–279

    Google Scholar 

  • Mishra A, Uhrich C, Reinold E, Pfeiffer M, Bäuerle P (2011) Synthesis and characterization of acceptor-substituted oligothiophenes for solar cell applications. Adv Energy Mater 1(2):265–273

    Article  CAS  Google Scholar 

  • Mishra A, Rana T, Looser A, Stolte M, Würthner F, Bäuerle P, Sharma GD (2016) High performance A-D-A oligothiophene-based organic solar cells employing two-step annealing and solution-processable copper thiocyanate (CuSCN) as an interfacial hole transporting layer. J Mater Chem A 4(44):17344–17353

    Article  CAS  Google Scholar 

  • Mishra A, Keshtov ML, Looser A, Singhal R, Stolte M, Würthner F, Bäuerle P, Sharma GD (2017) Unprecedented low energy losses in organic solar cells with high external quantum efficiencies by employing non-fullerene electron acceptors. J Mater Chem A 5(28):14887–14897

    Article  CAS  Google Scholar 

  • Mishra A, Wetzel C, Singhal R, Bäuerle P, Sharma GD (2018) Low energy gap triphenylamine–heteropentacene–dicyanovinyl triad for solution-processed bulk-heterojunction solar cells. J Phys Chem C 122(21):11262–11269

    Article  CAS  Google Scholar 

  • Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2007) High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays. Appl Phys Lett 91(15):152111

    Article  CAS  Google Scholar 

  • Nam E, Oh S, Jung D, Kim H, Chae H, Yi J (2012) Organic photovoltaic devices with the bilayer cathode interfacial structure of pyromellitic dianhydride and lithium fluoride. Semicon Sci Tech 27(10):105004

    Article  CAS  Google Scholar 

  • Nam S, Seo J, Han H, Kim H, Hahm SG, Ree M, Gal Y-S, Anthopoulos TD, Bradley DDC, Kim Y (2016) >10% efficiency polymer: fullerene solar cells with polyacetylene-based polyelectrolyte interlayers. Adv Mater Interfaces 3(23):1600415

    Article  CAS  Google Scholar 

  • Nam S, Seo J, Song M, Kim H, Ree M, Gal Y-S, Bradley DDC, Kim Y (2017) Polyacetylene-based polyelectrolyte as a universal interfacial layer for efficient inverted polymer solar cells. Org Electron 48:61–67

    Article  CAS  Google Scholar 

  • Nho S, Baek G, Park S, Lee BR, Cha MJ, Lim DC, Seo JH, Oh S-H, Song MH, Cho S (2016) Highly efficient inverted bulk-heterojunction solar cells with a gradiently-doped ZnO layer. Energy Environ Sci 9(1):240–246

    Article  CAS  Google Scholar 

  • Nian L, Zhang W, Zhu N, Liu L, Xie Z, Wu H, Würthner F, Ma Y (2015) Photoconductive cathode interlayer for highly efficient inverted polymer solar cells. J Am Chem Soc 137(22):6995–6998

    Article  CAS  Google Scholar 

  • Ouyang X, Peng R, Ai L, Zhang X, Ge Z (2015) Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte. Nat Photon 9:520–524

    Article  CAS  Google Scholar 

  • Page ZA, Liu Y, Duzhko VV, Russell TP, Emrick T (2014) Fulleropyrrolidine interlayers: tailoring electrodes to raise organic solar cell efficiency. Science 346(6208):441–444

    Article  CAS  Google Scholar 

  • Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photon 3(5):297–302

    Article  CAS  Google Scholar 

  • Park H-Y, Lim D, Kim K-D, Jang S-Y (2013) Performance Optimization of Low-temperature-annealed Solution-processable ZnO Buffer Layers for Inverted Polymer Solar Cells. J Mater Chem A 1:6327–6334

    Article  CAS  Google Scholar 

  • Peumans P, Forrest SR (2001) Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells. Appl Phys Lett 79(1):126–128

    Article  CAS  Google Scholar 

  • Pho TV, Kim H, Seo JH, Heeger AJ, Wudl F (2011) Quinacridone-based electron transport layers for enhanced performance in bulk-heterojunction solar cells. Adv Funct Mater 21(22):4338–4341

    Article  CAS  Google Scholar 

  • Puetz A, Stubhan T, Reinhard M, Loesch O, Hammarberg E, Wolf S, Feldmann C, Kalt H, Colsmann A, Lemmer U (2011) Organic solar cells incorporating buffer layers from indium doped zinc oxide nanoparticles. Sol Energy Mater Sol Cell 95(2):579–585

    Article  CAS  Google Scholar 

  • Reilly TH III, Hains AW, Chen H-Y, Gregg BA (2012) A self-doping, O2-stable, n-type interfacial layer for organic electronics. Adv Energy Mater 2(4):455–460

    Article  CAS  Google Scholar 

  • Schulz GL, Kar P, Weidelener M, Vogt A, Urdanpilleta M, Lindén M, Mena-Osteritz E, Mishra A, Bäuerle P (2016) The influence of alkyl side chains on molecular packing and solar cell performance of dithienopyrrole-based oligothiophenes. J Mater Chem A 4(27):10514–10523

    Article  CAS  Google Scholar 

  • Schulze K, Uhrich C, Schüppel R, Leo K, Pfeiffer M, Brier E, Reinold E, Bäuerle P (2006) Efficient vacuum deposited organic solar cells with high photovoltage based on a new low band-gap oligothiophene and fullerene C60. Adv Mater 18:2872–2875

    Article  CAS  Google Scholar 

  • Shao S, Zheng K, Pullerits T, Zhang F (2013) Enhanced performance of inverted polymer solar cells by using poly(ethylene oxide)-modified ZnO as an electron transport layer. ACS Appl Mater Interfaces 5(2):380–385

    Article  CAS  Google Scholar 

  • Sharma GD, Anil Reddy M, Ramana DV, Chandrasekharam M (2014) A novel carbazole-phenothiazine dyad small molecule as a non-fullerene electron acceptor for polymer bulk heterojunction solar cells. RSC Adv 4:33279–33285

    Article  CAS  Google Scholar 

  • Shin K-S, Lee K-H, Lee HH, Choi D, Kim S-W (2010) Enhanced power conversion efficiency of inverted organic solar cells with a ga-doped ZnO nanostructured thin film prepared using aqueous solution. J Phys Chem C 114(37):15782–15785

    Article  CAS  Google Scholar 

  • Sims L, Hörmann U, Hanfland R, MacKenzie RCI, Kogler FR, Steim R, Brütting W, Schilinsky P (2014) Investigation of the s-shape caused by the hole selective layer in bulk heterojunction solar cells. Org Electron 15(11):2862–2867

    Article  CAS  Google Scholar 

  • Singh A, Dey A, Das D, Iyer PK (2016) Effect of dual cathode buffer layer on the charge carrier dynamics of rrP3HT:PCBM based bulk heterojunction solar cell. ACS Appl Mater Interfaces 8(17):10904–10910

    Article  CAS  Google Scholar 

  • Small CE, Chen S, Subbiah J, Amb CM, Tsang S-W, Lai T-H, Reynolds JR, So F (2012) High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells. Nat Photon 6(2):115–120

    Article  CAS  Google Scholar 

  • Song CE, Ryu KY, Hong S-J, Bathula C, Lee SK, Shin WS, Lee J-C, Choi SK, Kim JH, Moon S-J (2013) Enhanced performance in inverted polymer solar cells with D–π–A-type molecular dye incorporated on ZnO buffer layer. Chemsuschem 6(8):1445–1454

    Article  CAS  Google Scholar 

  • Song C, Liu X, Li X, Wang Y-C, Wan L, Sun X, Zhang W, Fang J (2018) Perylene diimide-based zwitterion as the cathode interlayer for high-performance nonfullerene polymer solar cells. ACS Appl Mater Interfaces 10(17):14986–14992

    Article  CAS  Google Scholar 

  • Soultati A, Fakharuddin A, Polydorou E, Drivas C, Kaltzoglou A, Haider MI, Kournoutas F, Fakis M, Palilis LC, Kennou S, Davazoglou D, Falaras P, Argitis P, Gardelis S, Kordatos A, Chroneos AI, Schmidt-Mende L, Vasilopoulou M (2019) Lithium doping of ZnO for high efficiency and stability fullerene and non-fullerene organic solar cells. ACS Appl Energy Mater 2(3):1663–1675

    Article  CAS  Google Scholar 

  • Steim R, Choulis SA, Schilinsky P, Brabec CJ (2008) Interface modification for highly efficient organic photovoltaics. Appl Phys Lett 92(9):093303

    Article  CAS  Google Scholar 

  • Stubhan T, Oh H, Pinna L, Krantz J, Litzov I, Brabec CJ (2011) Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer. Org Electron 12(9):1539–1543

    Article  CAS  Google Scholar 

  • Stubhan T, Salinas M, Ebel A, Krebs FC, Hirsch A, Halik M, Brabec CJ (2012) Increasing the fill factor of inverted P3HT:PCBM solar cells through surface modification of Al-doped ZnO via phosphonic acid-anchored C60 SAMs. Adv Energy Mater 2(5):532–535

    Article  CAS  Google Scholar 

  • Stubhan T, Litzov I, Li N, Salinas M, Steidl M, Sauer G, Forberich K, Matt GJ, Halik M, Brabec CJ (2013) Overcoming interface losses in organic solar cells by applying low temperature, solution processed aluminum-doped zinc oxide electron extraction layers. J Mater Chem A 1:6004–6009

    Article  CAS  Google Scholar 

  • Subbiah J, Amb CM, Irfan I, Gao Y, Reynolds JR, So F (2012) High-efficiency inverted polymer solar cells with double interlayer. ACS Appl Mater Interfaces 4(2):866–870

    Article  CAS  Google Scholar 

  • Subbiah J, Purushothaman B, Chen M, Qin T, Gao M, Vak D, Scholes FH, Chen X, Watkins SE, Wilson GJ, Holmes AB, Wong WWH, Jones DJ (2015) Organic solar cells using a high-molecular-weight benzodithiophene–benzothiadiazole copolymer with an efficiency of 9.4%. Adv Mater 27(4):702–705

    Google Scholar 

  • Suemori K, Miyata T, Yokoyama M, Hiramoto M (2005) Three-layered organic solar cells incorporating a nanostructure-optimized phthalocyanine: fullerene codeposited interlayer. Appl Phys Lett 86(6):063509–063503

    Article  CAS  Google Scholar 

  • Sun Y, Seo JH, Takacs CJ, Seifter J, Heeger AJ (2011) Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer. Adv Mater 23(14):1679–1683

    Article  CAS  Google Scholar 

  • Sun K, Zhao B, Murugesan V, Kumar A, Zeng K, Subbiah J, Wong WWH, Jones DJ, Ouyang J (2012) High-performance polymer solar cells with a conjugated zwitterion by solution processing or thermal deposition as the electron-collection interlayer. J Mater Chem 22:24155–24165

    Article  CAS  Google Scholar 

  • Sun C, Wu Z, Hu Z, Xiao J, Zhao W, Li H-W, Li Q-Y, Tsang S-W, Xu Y-X, Zhang K, Yip H-L, Hou J, Huang F, Cao Y (2017) Interface design for high-efficiency non-fullerene polymer solar cells. Energy Environ Sci 10(8):1784–1791

    Article  CAS  Google Scholar 

  • Takanezawa K, Hirota K, Wei Q-S, Tajima K, Hashimoto K (2007) Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices. J Phys Chem C 111(19):7218–7223

    Article  CAS  Google Scholar 

  • Tang Z, Tress W, Bao Q, Jafari MJ, Bergqvist J, Ederth T, Andersson MR, Inganäs O (2014) Improving cathodes with a polymer interlayer in reversed organic solar cells. Adv Energy Mater 4:1400643

    Article  CAS  Google Scholar 

  • Tress W, Leo K, Riede M (2011) Influence of hole-transport layers and donor materials on open-circuit voltage and shape of I–V curves of organic solar cells. Adv Funct Mater 21(11):2140–2149

    Article  CAS  Google Scholar 

  • Trost S, Zilberberg K, Behrendt A, Riedl T (2012) Room-temperature solution processed SnOx as an electron extraction layer for inverted organic solar cells with superior thermal stability. J Mater Chem 22:16224–16229

    Article  CAS  Google Scholar 

  • Trost S, Zilberberg K, Behrendt A, Polywka A, Görrn P, Reckers P, Maibach J, Mayer T, Riedl T (2013) Overcoming the “Light-Soaking” issue in inverted organic solar cells by the use of Al:ZnO electron extraction layers. Adv Energy Mater 3(11):1437–1444

    Article  CAS  Google Scholar 

  • Trost S, Behrendt A, Becker T, Polywka A, Görrn P, Riedl T (2015) Tin oxide (SnOx) as universal “Light-Soaking” free electron extraction material for organic solar cells. Adv Energy Mater 5(17):1500277

    Article  CAS  Google Scholar 

  • van Reenen S, Kouijzer S, Janssen RAJ, Wienk MM, Kemerink M (2014) Origin of work function modification by ionic and amine-based interface layers. Adv Mater Interfaces 1(8):1400189

    Article  CAS  Google Scholar 

  • Vasilopoulou M, Georgiadou DG, Soultati A, Boukos N, Gardelis S, Palilis LC, Fakis M, Skoulatakis G, Kennou S, Botzakaki M, Georga S, Krontiras CA, Auras F, Fattakhova-Rohlfing D, Bein T, Papadopoulos TA, Davazoglou D, Argitis P (2014) Atomic-layer-deposited aluminum and zirconium oxides for surface passivation of TiO2 in high-efficiency organic photovoltaics. Adv Energy Mater 4(15):1400214

    Article  CAS  Google Scholar 

  • Vinokur J, Shamieh B, Deckman I, Singhal A, Frey GL (2016) Mechanisms for spontaneous generation of interlayers in organic solar cells. Chem Mater 28(24):8851–8870

    Article  CAS  Google Scholar 

  • Vogel M, Doka S, Breyer C, Lux-Steiner MC, Fostiropoulos K (2006) On the function of a bathocuproine buffer layer in organic photovoltaic cells. Appl Phys Lett 89(16):163501

    Article  CAS  Google Scholar 

  • Waldauf C, Morana M, Denk P, Schilinsky P, Coakley K, Choulis SA, Brabec CJ (2006) Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact. Appl Phys Lett 89(23):233517

    Article  CAS  Google Scholar 

  • Walzer K, Männig B, Pfeiffer M, Leo K (2007) Highly efficient organic devices based on electrically doped transport layers. Chem Rev 107(4):1233–1271

    Article  CAS  Google Scholar 

  • Wang G, Jiu T, Tang G, Li J, Li P, Song X, Lu F, Fang J (2014a) Interface modification of ZnO-based inverted PTB7:PC71BM organic solar cells by cesium stearate and simultaneous enhancement of device parameters. ACS Sustainable Chem Eng 2(5):1331–1337

    Article  CAS  Google Scholar 

  • Wang J, Zhang Z-G, Qi b, Jin Z, Chi D, Qi Z, Li Y (2014b) Perylene diimides: a thickness-insensitive cathode interlayer for high performance polymer solar cells. Energy Environ Sci 7(6):1966–1973

    Google Scholar 

  • Wang F, Za Tan, Li Y (2015) Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells. Energy Environ Sci 8(4):1059–1091

    Article  CAS  Google Scholar 

  • Wang Z, Li Z, Xu X, Li Y, Li K, Peng Q (2016) Polymer solar cells exceeding 10% efficiency enabled via a facile star-shaped molecular cathode interlayer with variable counterions. Adv Funct Mater 26(26):4643–4652

    Article  CAS  Google Scholar 

  • Wang C, Liu Z, Li M, Xie Y, Li B, Wang S, Xue S, Peng Q, Chen B, Zhao Z, Li Q, Ge Z, Li Z (2017) The marriage of AIE and interface engineering: convenient synthesis and enhanced photovoltaic performance. Chem Sci 8(5):3750–3758

    Article  CAS  Google Scholar 

  • Wei J, Ji G, Zhang C, Yan L, Luo Q, Wang C, Chen Q, Yang J, Chen L, Ma C-Q (2018) Silane-capped ZnO nanoparticles for use as the electron transport layer in inverted organic solar cells. ACS Nano 12(6):5518–5529

    Article  CAS  Google Scholar 

  • White MS, Olson DC, Shaheen SE, Kopidakis N, Ginley DS (2006) Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl Phys Lett 89(14):143517

    Article  CAS  Google Scholar 

  • Worfolk BJ, Hauger TC, Harris KD, Rider DA, Fordyce JAM, Beaupré S, Leclerc M, Buriak JM (2012) Work function control of interfacial buffer layers for efficient and air-stable inverted low-bandgap organic photovoltaics. Adv Energy Mater 2(3):361–368

    Article  CAS  Google Scholar 

  • Xiao Z, Jia X, Ding L (2017) Ternary organic solar cells offer 14% power conversion efficiency. Sci Bull 62(23):1562–1564

    Article  CAS  Google Scholar 

  • Xie Z, Xiao B, He Z, Zhang W, Wu X, Wu H, Würthner F, Wang C, Xie F, Liu L, Ma Y, Wong W-Y, Cao Y (2015) Self-assembled perylene bisimide J-aggregates as promising cathode modifiers for highly efficient inverted polymer solar cells. Mater Horiz 2(5):514–518

    Article  CAS  Google Scholar 

  • Xiong S, Hu L, Hu L, Sun L, Qin F, Liu X, Fahlman M, Zhou Y (2019) 12.5% flexible nonfullerene solar cells by passivating the chemical interaction between the active layer and polymer interfacial layer. Adv Mater:1806616

    Google Scholar 

  • Xu B, Hou J (2018) Solution-processable conjugated polymers as anode interfacial layer materials for organic solar cells. Adv Energy Mater 8(20):1800022

    Article  CAS  Google Scholar 

  • Xu B, Zheng Z, Zhao K, Hou J (2016) A bifunctional interlayer material for modifying both the anode and cathode in highly efficient polymer solar cells. Adv Mater 28(3):434–439

    Article  CAS  Google Scholar 

  • Yan Y, Cai F, Yang L, Li J, Zhang Y, Qin F, Xiong C, Zhou Y, Lidzey DG, Wang T (2017) Light-soaking-free inverted polymer solar cells with an efficiency of 10.5% by compositional and surface modifications to a low-temperature-processed TiO2 Electron-transport layer. Adv Mater 29(1):1604044

    Google Scholar 

  • Yao K, Salvador M, Chueh C-C, Xin X-K, Xu Y-X, deQuilettes DW, Hu T, Chen Y, Ginger DS, Jen AK-Y (2014) A general route to enhance polymer solar cell performance using plasmonic nanoprisms. Adv Energy Mater 4(9):1400206

    Article  CAS  Google Scholar 

  • Ye H, Hu X, Jiang Z, Chen D, Liu X, Nie H, Su S-J, Gong X, Cao Y (2013) Pyridinium salt-based molecules as cathode interlayer for enhanced performance in polymer solar cells. J Mater Chem A 1:3387–3394

    Article  CAS  Google Scholar 

  • Yin Z, Zheng Q, Chen S-C, Cai D (2013) Interface control of semiconducting metal oxide layers for efficient and stable inverted polymer solar cells with open-circuit voltages over 1.0 Volt. ACS Appl Mater Interfaces 5(18):9015–9025

    Google Scholar 

  • Yin Z, Zheng Q, Chen S-C, Cai D, Zhou L, Zhang J (2014) Bandgap tunable Zn1-xMgxO thin films as highly transparent cathode buffer layers for high-performance inverted polymer solar cells. Adv Energy Mater 4:1301404

    Article  CAS  Google Scholar 

  • Yin Z, Wei J, Zheng Q (2016) Interfacial materials for organic solar cells: recent advances and perspectives. Adv Sci 3(8):1500362

    Article  CAS  Google Scholar 

  • Yip H-L, Jen AKY (2012) Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ Sci 5:5994–6011

    Article  CAS  Google Scholar 

  • You J, Chen C-C, Dou L, Murase S, Duan H-S, Hawks S, Xu T, Son HJ, Yu L, Li G, Yang Y (2012) Metal oxide nanoparticles as an electron-transport layer in high-performance and stable inverted polymer solar cells. Adv Mater 24(38):5267–5272

    Article  CAS  Google Scholar 

  • Yu J, Shen T-L, Weng W-H, Huang Y-C, Huang C-I, Su W-F, Rwei S-P, Ho K-C, Wang L (2012) Molecular design of interfacial modifiers for polymer-inorganic hybrid solar cells. Adv Energy Mater 2(2):245–252

    Article  CAS  Google Scholar 

  • Yu W, Huang L, Yang D, Fu P, Zhou L, Zhang J, Li C (2015) Efficiency exceeding 10% for inverted polymer solar cells with a ZnO/ionic liquid combined cathode interfacial layer. J Mater Chem A 3(20):10660–10665

    Article  CAS  Google Scholar 

  • Yu J, Xi Y, Chueh C-C, Zhao D, Lin F, Pozzo LD, Tang W, Jen AKY (2016) A room-temperature processable pdi-based electron-transporting layer for enhanced performance in PDI-based non-fullerene solar cells. Adv Mater Interfaces 3(18):1600476

    Article  CAS  Google Scholar 

  • Yusoff ARBM, Kim D, Kim HP, Shneider FK, da Silva WJ, Jang J (2014) A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83%. Energy Environ Sci 8:303–316

    Google Scholar 

  • Za Tan, Qian D, Zhang W, Li L, Ding Y, Xu Q, Wang F, Li Y (2013) Efficient and stable polymer solar cells with solution-processed molybdenum oxide interfacial layer. J Mater Chem A 1:657–664

    Article  Google Scholar 

  • Zhang Z-G, Li H, Qi Z, Jin Z, Liu G, Hou J, Li Y, Wang J (2013) Poly(ethylene glycol) modified [60]fullerene as electron buffer layer for high-performance polymer solar cells. Appl Phys Lett 102(14):143902

    Article  CAS  Google Scholar 

  • Zhang W, Wu Y, Bao Q, Gao F, Fang J (2014) Morphological control for highly efficient inverted polymer solar cells via the backbone design of cathode interlayer materials. Adv Energy Mater 4(12):1400359

    Article  CAS  Google Scholar 

  • Zhang H, Yao H, Hou J, Zhu J, Zhang J, Li W, Yu R, Gao B, Zhang S, Hou J (2018a) Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors. Adv Mater:1800613

    Google Scholar 

  • Zhang S, Qin Y, Zhu J, Hou J (2018b) Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv Mater 30(20):1800868

    Article  CAS  Google Scholar 

  • Zhao X, Xu C, Wang H, Chen F, Zhang W, Zhao Z, Chen L, Yang S (2014) Application of biuret, dicyandiamide, or urea as a cathode buffer layer toward the efficiency enhancement of polymer solar cells. ACS Appl Mater Interfaces 6(6):4329–4337

    Article  CAS  Google Scholar 

  • Zhao K, Ye L, Zhao W, Zhang S, Yao H, Xu B, Sun M, Hou J (2015) Enhanced efficiency of polymer photovoltaic cells via the incorporation of a water-soluble naphthalene diimide derivative as a cathode interlayer. J Mater Chem C 3(37):9565–9571

    Article  CAS  Google Scholar 

  • Zhao Y, Schwab MG, Kiersnowski A, Pisula W, Baumgarten M, Chen L, Müllen K, Li C (2016) Trifluoromethyl-functionalized bathocuproine for polymer solar cells. J Mater Chem C 4(21):4640–4646

    Article  CAS  Google Scholar 

  • Zheng Z, Zhang S, Wang J, Zhang J, Zhang D, Zhang Y, Wei Z, Tang Z, Hou J, Zhou H (2019) Exquisite modulation of ZnO nanoparticle electron transporting layer for high-performance fullerene-free organic solar cell with inverted structure. J Mater Chem A 7(8):3570–3576

    Article  CAS  Google Scholar 

  • Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano AJ, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan TM, Sojoudi H, Barlow S, Graham S, Brédas J-L, Marder SR, Kahn A, Kippelen B (2012a) A universal method to produce low-work function electrodes for organic electronics. Science 336(6079):327–332

    Article  CAS  Google Scholar 

  • Zhou Y, Fuentes-Hernandez C, Shim JW, Khan TM, Kippelen B (2012b) High performance polymeric charge recombination layer for organic tandem solar cells. Energy Environ Sci 5:9827–9832

    Article  CAS  Google Scholar 

  • Zilberberg K, Behrendt A, Kraft M, Scherf U, Riedl T (2013) Ultrathin interlayers of a conjugated polyelectrolyte for low work-function cathodes in efficient inverted organic solar cells. Org Electron 14(3):951–957

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Sambalpur University for providing research infrastructure and Department of Science and Technology (DST), New Delhi (DST/TMD/SERI/D05) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaresh Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, A. (2020). Interfacial Materials for Organic Solar Cells. In: Tyagi, H., Chakraborty, P., Powar, S., Agarwal, A. (eds) Solar Energy. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-0675-8_18

Download citation

Publish with us

Policies and ethics