Skip to main content

PCM-Metal Foam Composite Systems for Solar Energy Storage

  • Chapter
  • First Online:
Solar Energy

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Efficient storage of solar thermal energy has been a key research area in recent years. Among the various methods for energy storage, phase change material (PCM) based latent heat systems have shown a lot of promise due to their high energy storage densities and smaller system sizes. However, the low thermal conductivities of PCM pose a significant challenge in designing such systems, therefore, augmentation with suitable thermal conductivity enhancers becomes necessary to improve their energy charging and discharging performances. The use of metal foam structures embedded in PCM to form composite PCM-metal foam energy storage system can improve the effective thermal conductivity remarkably due to the high surface area for heat transfer between the metal foam and the PCM. This chapter presents a study of PCM-metal foam composite systems for solar energy storage. At first, a brief overview of the relevant thermal enhancement methods with particular emphasis on metal foam systems is presented. This is followed by the description of a typical PCM-metal foam composite system and the important parameters governing its energy storage performance. Different modelling approaches for such systems and their advantages and disadvantages are presented. The effect of important factors for metal foam-PCM composite systems are analyzed by performing pore-scale simulations. It is shown that factors such as metal foam porosity, pore size distribution, foam material, phase change material and overall system size contribute significantly towards the melting pattern and energy storage characteristics of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abishek S, King AJC, Mead-Hunter R, Golkarfard V, Heikamp W, Mullins BJ (2017) Generation and validation of virtual nonwoven, foam and knitted filter (separator/coalescer) geometries for CFD simulations. Sep Purif Technol 188:493–507

    Article  CAS  Google Scholar 

  • Abishek S, King AJC, Nadim N, Mullins BJ (2018) Effect of microstructure on melting in metal-foam/paraffin composite phase change materials. Int J Heat Mass Transf 127:135–144

    Article  CAS  Google Scholar 

  • Agyenim F, Hewitt N, Eames P, Smyth M (2010) A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 14(2):615–628

    Article  CAS  Google Scholar 

  • Bhattacharya A, Dutta P (2013) An enthalpy-based model of dendritic growth in a convecting binary alloy melt. Int J Numer Methods Heat Fluid Flow 23(7):1121–1135

    Article  Google Scholar 

  • Boomsma K, Poulikakos D, Ventikos Y (2003) Simulations of flow through open cell metal foams using an idealized periodic cell structure. Int J Heat Fluid Flow 24(6):825–834

    Article  Google Scholar 

  • Chen Z, Gao D, Shi J (2014) Experimental and numerical study on melting of phase change materials in metal foams at pore scale. Int J Heat Mass Transf 72:646–655

    Article  CAS  Google Scholar 

  • Deng Z, Liu X, Zhang C, Huang Y, Chen Y (2017) Melting behaviors of PCM in porous metal foam characterized by fractal geometry. Int J Heat Mass Transf 113:1031–1042

    Article  CAS  Google Scholar 

  • Dinesh BVS, Bhattacharya A (2019) Effect of foam geometry on heat absorption characteristics of PCM-metal foam composite thermal energy storage systems. Int J Heat Mass Transf 134:866–883

    Article  Google Scholar 

  • Fan L, Khodadadi JM (2011) Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev 15(1):24–46

    Article  CAS  Google Scholar 

  • Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energy Convers Manag 45(9–10):1597–1615

    Article  CAS  Google Scholar 

  • Hong ST, Herling DR (2006) Open-cell aluminum foams filled with phase change materials as compact heat sinks. Scripta Mater 55(10):887–890

    Article  CAS  Google Scholar 

  • Ibrahim NI, Al-Sulaiman FA, Rahman S, Yilbas BS, Sahin AZ (2017) Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review. Renew Sustain Energy Rev 74:26–50

    Article  CAS  Google Scholar 

  • Ji H, Sellan DP, Pettes MT, Kong X, Ji J, Shi L, Ruoff RS (2014) Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ Sci 7(3):1185–1192

    Article  CAS  Google Scholar 

  • Kenisarin M, Mahkamov K (2007) Solar energy storage using phase change materials. Renew Sustain Energy Rev 11(9):1913–1965

    Article  CAS  Google Scholar 

  • Kumar A, Saha SK (2018) Latent heat thermal storage with variable porosity metal matrix: a numerical study. Renew Energy 125:962–973

    Article  Google Scholar 

  • Lafdi K, Mesalhy O, Shaikh S (2007) Experimental study on the influence of foam porosity and pore size on the melting of phase change materials. J Appl Phys 102(8):083549

    Article  Google Scholar 

  • Lafdi K, Mesalhy O, Elgafy A (2008) Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications. Carbon 46(1):159–168

    Article  CAS  Google Scholar 

  • Lin Y, Jia Y, Alva G, Fang G (2018) Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew Sustain Energy Rev 82:2730–2742

    Article  CAS  Google Scholar 

  • Liu L, Su D, Tang Y, Fang G (2016) Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev 62:305–317

    Article  CAS  Google Scholar 

  • Mancin S, Diani A, Doretti L, Hooman K, Rossetto L (2015) Experimental analysis of phase change phenomenon of paraffin waxes embedded in copper foams. Int J Therm Sci 90:79–89

    Article  CAS  Google Scholar 

  • Mesalhy O, Lafdi K, Elgafy A, Bowman K (2005) Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix. Energy Convers Manag 46(6):847–867

    Article  CAS  Google Scholar 

  • Nazir H, Batool M, Osorio FJB, Isaza-Ruiz M, Xu X, Vignarooban K, Kannan AM (2019) Recent developments in phase change materials for energy storage applications: a review. Int J Heat Mass Transf 129:491–523

    Article  CAS  Google Scholar 

  • Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage. Prog Mater Sci 65:67–123

    Article  CAS  Google Scholar 

  • Qureshi ZA, Ali HM, Khushnood S (2018) Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. Int J Heat Mass Transf 127:838–856

    Article  CAS  Google Scholar 

  • Ren Q, He YL, Su KZ, Chan CL (2017) Investigation of the effect of metal foam characteristics on the PCM melting performance in a latent heat thermal energy storage unit by pore-scale lattice Boltzmann modeling. Numer Heat Transf Part A: Appl 72(10):745–764

    Article  CAS  Google Scholar 

  • Ren Q, Meng F, Guo P (2018) A comparative study of PCM melting process in a heat pipe-assisted LHTES unit enhanced with nanoparticles and metal foams by immersed boundary-lattice Boltzmann method at pore-scale. Int J Heat Mass Transf 121:1214–1228

    Article  Google Scholar 

  • Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345

    Article  CAS  Google Scholar 

  • Siahpush A, O’Brien J, Crepeau J (2008) Phase change heat transfer enhancement using copper porous foam. J Heat Transf 130(8):082301

    Article  Google Scholar 

  • Srivatsa PVSS, Baby R, Balaji C (2014) Numerical investigation of PCM based heat sinks with embedded metal foam/crossed plate fins. Numer Heat Transf Part A: Appl 66(10):1131–1153

    Article  CAS  Google Scholar 

  • Sundarram SS, Li W (2014) The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams. Appl Therm Eng 64(1–2):147–154

    Article  Google Scholar 

  • Tian Y, Zhao CY (2011) A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals. Energy 36(9):5539–5546

    Article  CAS  Google Scholar 

  • Voller VR (2008) An enthalpy method for modeling dendritic growth in a binary alloy. Int J Heat Mass Transf 51(3–4):823–834

    Article  CAS  Google Scholar 

  • Wang M, Pan N (2008) Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. Int J Heat Mass Transf 51(5–6):1325–1331

    Article  CAS  Google Scholar 

  • Wang C, Lin T, Li N, Zheng H (2016) Heat transfer enhancement of phase change composite material: copper foam/paraffin. Renew Energy 96:960–965

    Article  CAS  Google Scholar 

  • Xiao X, Zhang P, Li M (2013) Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy 112:1357–1366

    Article  CAS  Google Scholar 

  • Xiao X, Zhang P, Li M (2014) Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage. Int J Therm Sci 81:94–105

    Article  CAS  Google Scholar 

  • Xu B, Li P, Chan C (2015) Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy 160:286–307

    Article  Google Scholar 

  • Yang X, Bai Q, Guo Z, Niu Z, Yang C, Jin L, Yan J (2018) Comparison of direct numerical simulation with volume-averaged method on composite phase change materials for thermal energy storage. Appl Energy 229:700–714

    Article  CAS  Google Scholar 

  • Zalba B, Marın JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23(3):251–283

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang N, Peng J, Fang X, Gao X, Fang Y (2012) Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl Energy 91(1):426–431

    Article  CAS  Google Scholar 

  • Zhang Z, Cheng J, He X (2017) Numerical simulation of flow and heat transfer in composite PCM on the basis of two different models of open-cell metal foam skeletons. Int J Heat Mass Transf 112:959–971

    Article  CAS  Google Scholar 

  • Zhao CY, Lu W, Tian Y (2010) Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Sol Energy 84(8):1402–1412

    Article  CAS  Google Scholar 

  • Zhao W, France DM, Yu W, Kim T, Singh D (2014) Phase change material with graphite foam for applications in high-temperature latent heat storage systems of concentrated solar power plants. Renew Energy 69:134–146

    Article  CAS  Google Scholar 

  • Zheng H, Wang C, Liu Q, Tian Z, Fan X (2018) Thermal performance of copper foam/paraffin composite phase change material. Energy Convers Manag 157:372–381

    Article  CAS  Google Scholar 

  • Zhu ZQ, Huang YK, Hu N, Zeng Y, Fan LW (2018) Transient performance of a PCM-based heat sink with a partially filled metal foam: effects of the filling height ratio. Appl Therm Eng 128:966–972

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharya, A. (2020). PCM-Metal Foam Composite Systems for Solar Energy Storage. In: Tyagi, H., Chakraborty, P., Powar, S., Agarwal, A. (eds) Solar Energy. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-0675-8_11

Download citation

Publish with us

Policies and ethics