Skip to main content

Materials for Electrical Detection of Water Pollutants

  • Chapter
  • First Online:
Sensors in Water Pollutants Monitoring: Role of Material

Abstract

Water pollution has become one of the irresistible problems worldwide. FETs and AlGaN/GaN HEMTs (High Electron Mobility Transistors) are the forthcoming hopeful tools for real-time, ultrasensitive recognition of analyte. They are taking attention over other techniques because of its exceptional properties like fast response, high sensitivity, low toxicity, superior biocompatibility and excellent chemical stability. Precision of FET sensors depend upon concentration of ions and inherent properties of the material i.e. band gap & carriers effective mass. 2D layered nanostructures such as graphene and its analogues, black phosphorous (called phosphorene), conducting polymers are attracting the researchers due to their in numerous novel properties over conventional bulk semiconducting materials; such as tuneable band gap, high carrier mobility (~102–105 cm2/V/s), good electrical and magnetic properties etc. This chapter will cover all the basic and comprehensive analysis of technique reported materials and will include the future prospective and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. US EPA. (2014). Drinking water contaminants, http://water.epa.gov/drink/contaminants/index.cfm, accessed January 2014.

  2. Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Marinas, B. J., & Mayes, A. M. (2010). Science and technology for water purification in the coming decades. In Nanoscience and technology: A collection of reviews from nature Journals (pp. 337–346).

    Google Scholar 

  3. Environmental Protection Agency, US. (2006). Inorganic contaminant accumulation in potable water distribution systems. USA: Office of Groundwater and Drinking Water.

    Google Scholar 

  4. UN WWAP. (2003). The world water development report 1: Water for people, water for life. UNESCO, Paris

    Google Scholar 

  5. Elimelech, M. (2006). The global challenge for adequate and safe water. Journal of Water Supply: Research and Technology-AQUA55(1), 3–10.

    Google Scholar 

  6. Fawell, J., & Nieuwenhuijsen, M. J. (2003). Contaminants in drinking water environmental pollution and health. British Medical Bulletin, 68(1), 199–208.

    Article  CAS  Google Scholar 

  7. Devi, P., Sharma, C., Kumar, P., Kumar, M., Bansod, B. K., Nayak, M. K., et al. (2017). Selective electrochemical sensing for arsenite using rGO/Fe3O4 nanocomposites. Journal of Hazardous Materials, 322, 85–94.

    Article  CAS  Google Scholar 

  8. Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361–377.

    Article  CAS  Google Scholar 

  9. World Health Organization. (2003). Nitrate and nitrite in drinking-water: Background document for development of WHO Guidelines for Drinking-water Quality (No. WHO/SDE/WSH/04.03/56). World Health Organization.

    Google Scholar 

  10. Squillace, P. J., Moran, M. J., Lapham, W. W., Price, C. V., Clawges, R. M., & Zogorski, J. S. (1999). Volatile organic compounds in untreated ambient groundwater of the United States, 1985–1995. Environmental Science and Technology, 33(23), 4176–4187.

    Article  CAS  Google Scholar 

  11. Susheela, A. K. (1999). Fluorosis management programme in India. Current Science, 77(10), 1250–1256.

    Google Scholar 

  12. Fawell, J., Bailey, K., Chilton, J., Dahi, E., & Magara, Y. (2006). Fluoride in drinking-water. IWA Publishing.

    Google Scholar 

  13. Water, S., & World Health Organization. (2004). Guidelines for drinking-water quality. Vol. 1, Recommendations.

    Google Scholar 

  14. Gopal, R., & Ghosh, P. K. (1985). Fluoride in drinking water-its effects and removal. Defence Science Journal, 35(1), 71–88.

    Article  CAS  Google Scholar 

  15. Eswar, P., Nagesh, L., & Devaraj, C. G. (2011). Intelligence quotients of 12-14 year old school children in a high and a low fluoride village in India. Fluoride, 44(3), 168.

    CAS  Google Scholar 

  16. EGVM, U. (2002). Revised review of selenium. United Kingdom Expert Group on Vitamins and Minerals (EVM/99/17. REVISEDAUG2002).

    Google Scholar 

  17. Klapec, T., Mandić, M. L., Grgić, J., Primorac, L., Ikić, M., Lovrić, T. … Herceg, Z. (1998). Daily dietary intake of selenium in eastern Croatia. Science of the Total Environment217(1–2), 127–136.

    Google Scholar 

  18. Smith, M. I., & Westfall, B. B. (1937). Further field studies on the selenium problem in relation to public health. Public Health Reports, 1896–1970, 1375–1384.

    Article  Google Scholar 

  19. Scott, R. C., & Voegeli, P. T. (1961). Radiochemical analyses of ground and surface water in Colorado, 1954–1961. Colorado Water Conservation Board.

    Google Scholar 

  20. Lindberg, P., & Bingefors, S. (1970). Selenium levels of forages and soils in different regions of Sweden. Acta Agriculturae Scandinavica, 20(2), 133–136.

    Article  Google Scholar 

  21. World Health Organization. (2003). Selenium in drinking-water: Background document for development of WHO guidelines for drinking-water quality (No. WHO/SDE/WSH/03.04/13). World Health Organization.

    Google Scholar 

  22. World Health Organization. (2003). Atrazine in drinking-water: Background document for development of WHO guidelines for drinking-water quality (No. WHO/SDE/WSH/03.04/32). World Health Organization.

    Google Scholar 

  23. McClellan, K., & Halden, R. U. (2010). Pharmaceuticals and personal care products in archived US biosolids from the 2001 EPA national sewage sludge survey. Water Research, 44(2), 658–668.

    Article  CAS  Google Scholar 

  24. Gupta, A., Maranas, C. D., & McDonald, C. M. (2000). Mid-term supply chain planning under demand uncertainty: Customer demand satisfaction and inventory management. Computers & Chemical Engineering, 24(12), 2613–2621.

    Article  CAS  Google Scholar 

  25. Ram, R. (1990). Educational expansion and schooling inequality: International evidence and some implications. The Review of Economics and Statistics, 72(2), 266–274.

    Article  Google Scholar 

  26. Harvey, P. M., Wilking, B. A., Joy, M., & Lester, D. F. (1984). An infrared study of the bi-polar outflow region GGD 12–15.

    Google Scholar 

  27. Duthaler, G. M., Amundson, K. R., Comiskey, B., Gates, H. G., Goenaga, A., Ritter, J. E. … Pullen, A. E. (2009). U.S. Patent No. 7,561,324. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  28. Sharma, S., Sachdeva, P., & Virdi, J. S. (2003). Emerging water-borne pathogens. Applied Microbiology and Biotechnology, 61(5–6), 424–428.

    Article  CAS  Google Scholar 

  29. https://www.safewater.org/fact-sheets-1/2017/1/23/pesticides.

  30. Bhardwaj, J., Gupta, K. K., & Gupta, R. (2015, February). A review of emerging trends on water quality measurement sensors. In 2015 International Conference on Technologies for Sustainable Development (ICTSD) (pp. 1–6). IEEE.

    Google Scholar 

  31. https://www.berkeywater.com/news/a-look-at-radiological-water-contaminants/.

  32. Moore, G. E. (1965). Cramming more components onto integrated circuits.

    Google Scholar 

  33. Laws, D. A. (2010). A company of legend: The legacy of fairchild semiconductor. IEEE Annals of the History of Computing, 32(1), 60–74.

    Article  Google Scholar 

  34. Moore, G. E. (1975, December). Progress in digital integrated electronics. In Electron devices meeting (Vol. 21, pp. 11–13).

    Google Scholar 

  35. https://www.electronics-tutorials.ws/transistor/tran_1.html.

  36. Neamen, D. A. (2001). Electronic circuit analysis and design (Vol. 2). McGraw-Hill.

    Google Scholar 

  37. Lee, Y. H., Jang, M., Lee, M. Y., Kweon, O. Y., & Oh, J. H. (2017). Flexible field-effect transistor-type sensors based on conjugated molecules. Chem, 3(5), 724–763.

    Article  CAS  Google Scholar 

  38. Jimenez-Jorquera, C., Orozco, J., & Baldi, A. (2010). ISFET based microsensors for environmental monitoring. Sensors, 10(1), 61–83.

    Article  CAS  Google Scholar 

  39. https://www.nature.com/subjects/supramolecular-chemistry.

  40. Cobben, P. L., Egberink, R. J., Bomer, J. G., Bergveld, P., Verboom, W., & Reinhoudt, D. N. (1992). Transduction of selective recognition of heavy metal ions by chemically modified field effect transistors (CHEMFETs). Journal of the American Chemical Society, 114(26), 10573–10582.

    Article  CAS  Google Scholar 

  41. Gupta, V. K., Mangla, R., & Agarwal, S. (2002). Pb (II) selective potentiometric sensor based on 4‐tert‐butylcalix [4] arene in PVC matrix. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis14(15–16), 1127–1132.

    Google Scholar 

  42. Borraccino, A., Campanella, L., Sammartino, M. P., Tomassetti, M., & Battilotti, M. (1992). Suitable ion-selective sensors for lead and cadmium analysis. Sensors and Actuators B: Chemical, 7(1–3), 535–539.

    Article  CAS  Google Scholar 

  43. Knopfmacher, O., Hammock, M. L., Appleton, A. L., Schwartz, G., Mei, J., Lei, T…. Bao, Z. (2014). Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nature communications5, 2954.

    Google Scholar 

  44. Rullyani, C., Shellaiah, M., Ramesh, M., Lin, H. C., & Chu, C. W. (2019). Pyrene-SH functionalized OTFT for detection of Hg2+ ions in aquatic environments. Organic Electronics.

    Google Scholar 

  45. Forzani, E. S., Li, X., Zhang, P., Tao, N., Zhang, R., Amlani, I., et al. (2006). Tuning the chemical selectivity of SWNT-FETs for detection of heavy-metal ions. Small (Weinheim an der Bergstrasse, Germany), 2(11), 1283–1291.

    Article  CAS  Google Scholar 

  46. Park, J. W., Park, S. J., Kwon, O. S., Lee, C., & Jang, J. (2014). High-performance Hg2+ FET-type sensors based on reduced graphene oxide–polyfuran nanohybrids. Analyst, 139(16), 3852–3855.

    Article  CAS  Google Scholar 

  47. Li, M., Gou, H., Al-Ogaidi, I., & Wu, N. (2013). Nanostructured sensors for detection of heavy metals: A review.

    Google Scholar 

  48. Yu, C., Guo, Y., Liu, H., Yan, N., Xu, Z., Yu, G., et al. (2013). Ultrasensitive and selective sensing of heavy metal ions with modified graphene. Chemical Communications, 49(58), 6492–6494.

    Article  CAS  Google Scholar 

  49. Zhou, G., Chang, J., Cui, S., Pu, H., Wen, Z., & Chen, J. (2014). Real-time, selective detection of Pb2+ in water using a reduced graphene oxide/gold nanoparticle field-effect transistor device. ACS Applied Materials & Interfaces, 6(21), 19235–19241.

    Article  CAS  Google Scholar 

  50. Schöning, M. J., Krause, R., Block, K., Musahmeh, M., Mulchandani, A., & Wang, J. (2003). A dual amperometric/potentiometric FIA-based biosensor for the distinctive detection of organophosphorus pesticides. Sensors and Actuators B: Chemical, 95(1–3), 291–296.

    Article  Google Scholar 

  51. Pokhrel, L. R., Ettore, N., Jacobs, Z. L., Zarr, A., Weir, M. H., Scheuerman, P. R. … Dubey, B. (2017). Novel carbon nanotube (CNT)-based ultrasensitive sensors for trace mercury (II) detection in water: a review. Science of the Total Environment574, 1379–1388.

    Google Scholar 

  52. An, J. H., Park, S. J., Kwon, O. S., Bae, J., & Jang, J. (2013). High-performance flexible graphene aptasensor for mercury detection in mussels. ACS Nano, 7(12), 10563–10571.

    Article  CAS  Google Scholar 

  53. Chang, J., Zhou, G., Gao, X., Mao, S., Cui, S., Ocola, L. E. … Chen, J. (2015). Real-time detection of mercury ions in water using a reduced graphene oxide/DNA field-effect transistor with assistance of a passivation layer. Sensing and bio-sensing research5, 97–104.

    Google Scholar 

  54. Wen, Y., Li, F. Y., Dong, X., Zhang, J., Xiong, Q., & Chen, P. (2013). The electrical detection of lead ions using gold-nanoparticle-and DNAzyme-functionalized graphene device. Advanced Healthcare Materials, 2(2), 271–274.

    Article  CAS  Google Scholar 

  55. An, J. H., & Jang, J. (2017). A highly sensitive FET-type aptasensor using flower-like MoS 2 nanospheres for real-time detection of arsenic (iii). Nanoscale, 9(22), 7483–7492.

    Article  CAS  Google Scholar 

  56. Zhou, G., Chang, J., Pu, H., Shi, K., Mao, S., Sui, X. … Chen, J. (2016). Ultrasensitive mercury ion detection using DNA-functionalized molybdenum disulfide nanosheet/gold nanoparticle hybrid field-effect transistor device. ACS Sensors1(3), 295–302

    Google Scholar 

  57. Li, P., Zhang, D., Sun, Y. E., Chang, H., Liu, J., & Yin, N. (2016). Towards intrinsic MoS2 devices for high performance arsenite sensing. Applied Physics Letters, 109(6), 063110.

    Article  Google Scholar 

  58. Li, P., Zhang, D., Liu, J., Chang, H., Sun, Y. E., & Yin, N. (2015). Air-stable black phosphorus devices for ion sensing. ACS Applied Materials & Interfaces, 7(44), 24396–24402.

    Article  CAS  Google Scholar 

  59. Zhou, G., Pu, H., Chang, J., Sui, X., Mao, S., & Chen, J. (2018). Real-time electronic sensor based on black phosphorus/Au NPs/DTT hybrid structure: Application in arsenic detection. Sensors and Actuators B: Chemical, 257, 214–219.

    Article  CAS  Google Scholar 

  60. Mikolajick, T., & Weber, W. M. (2015). Silicon nanowires: Fabrication and applications. In Anisotropic nanomaterials (pp. 1–25). Cham: Springer.

    Google Scholar 

  61. Luo, L., Jie, J., Zhang, W., He, Z., Wang, J., Yuan, G. … Lee, S. T. (2009). Silicon nanowire sensors for Hg2+ and Cd2+ ions. Applied Physics Letters94(19), 193101.

    Google Scholar 

  62. Chen, K. H., Wang, H. W., Kang, B. S., Chang, C. Y., Wang, Y. L., Lele, T. P., et al. (2008). Low Hg (II) ion concentration electrical detection with AlGaN/GaN high electron mobility transistors. Sensors and Actuators B: Chemical, 134(2), 386–389.

    Article  CAS  Google Scholar 

  63. Chen, Y. T., Sarangadharan, I., Sukesan, R., Hseih, C. Y., Lee, G. Y., Chyi, J. I., & Wang, Y. L. (2018). High-field modulated ion-selective field-effect-transistor (FET) sensors with sensitivity higher than the ideal Nernst sensitivity. Scientific reports8.

    Google Scholar 

  64. Minami, T., Minamiki, T., & Tokito, S. (2016). Detection of mercury (II) ion in water using an organic field-effect transistor with a cysteine-immobilized gold electrode. Japanese Journal of Applied Physics55(4S), 04EL02.

    Google Scholar 

  65. Taillades, G., Valls, O., Bratov, A., Dominguez, C., Pradel, A., & Ribes, M. (1999). ISE and ISFET microsensors based on a sensitive chalcogenide glass for copper ion detection in solution. Sensors and Actuators B: Chemical59(2–3), 123–127.

    Google Scholar 

  66. Frant, M. S., & Ross, J. W. (1966). Electrode for sensing fluoride ion activity in solution. Science, 154(3756), 1553–1555.

    Article  CAS  Google Scholar 

  67. Moritz, W., Meierhöfer, I., & Müller, L. (1988). Fluoride-sensitive membrane for ISFETs. Sensors and Actuators, 15(3), 211–219.

    Article  CAS  Google Scholar 

  68. Hara, H., Yabuuchi, K., Higashida, M., & Ogawa, M. (1998). Determination of free and total fluoride in rain water using a continuous-flow system equipped with a fluoride ion-selective electrode detector. Analytica Chimica Acta, 364(1–3), 117–123.

    Article  CAS  Google Scholar 

  69. Hara, H., & Huang, C. C. (1997). Buffer composition suitable for determining very low fluoride concentrations using a fluoride ion-selective electrode and its application to the continuous analysis of rain water. Analytica Chimica Acta, 338(1–2), 141–147.

    Article  CAS  Google Scholar 

  70. Moritz, W., van der Schoot, B. H., de Rooij, N. F., van der Vlekkert, H. H., & Ligtenberg, H. C. G. (1993). ISFET combination pH/pF for the fast determination of very low fluoride concentrations using acid solutions. Sensors and Actuators B: Chemical, 13(1–3), 217–220.

    Article  CAS  Google Scholar 

  71. Ion, A. C., Ion, I., Antonisse, M. M. G., Snelink-Rüuel, B. H. M., & Reinhoudt, D. N. (2001). Characteristics of fluoride-selective electrode with uranyl salophen receptors in aqueous solutions. Russian Journal of General Chemistry, 71(2), 159–161.

    Article  CAS  Google Scholar 

  72. Ismail, A. B. M., Furuichi, K., Yoshinobu, T., & Iwasaki, H. (2002). Light-addressable potentiometric fluoride (F) sensor. Sensors and Actuators B: Chemical, 86(1), 94–97.

    Article  CAS  Google Scholar 

  73. Stoop, R., Wipf, M., Müller, S., Bedner, K., Wright, I., Martin, C. … Calame, M. (2016). Implementing silicon nanoribbon field-effect transistors as arrays for multiple ion detection. Biosensors6(2), 21

    Google Scholar 

  74. Cho, H., Kim, K., Meyyappan, M., & Baek, C. K. (2019). LaF3 electrolyte-insulator-semiconductor sensor for detecting fluoride ions. Sensors and Actuators B: Chemical, 279, 183–188.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Ministry of Human Resource Development (MHRD), New Delhi for financial support to conduct the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuvraj Singh Negi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, C., Sauraj, Negi, Y.S. (2020). Materials for Electrical Detection of Water Pollutants. In: Pooja, D., Kumar, P., Singh, P., Patil, S. (eds) Sensors in Water Pollutants Monitoring: Role of Material. Advanced Functional Materials and Sensors. Springer, Singapore. https://doi.org/10.1007/978-981-15-0671-0_7

Download citation

Publish with us

Policies and ethics