Skip to main content

Water Pollutants: Sources and Impact on the Environment and Human Health

  • Chapter
  • First Online:
Sensors in Water Pollutants Monitoring: Role of Material

Abstract

Water is the most crucial commodity for life support process in organism. Water is basic and mandatory need for the humans and the entire living creature on earth. Therefore, the consumption of water by human should be safe, easily accessible, adequate and free from any kind of contamination. Pollutants in water bodies pose a severe threat to human health as well as aquatic ecosystem. There are numbers of water pollutant which has been categorized into inorganic pollutants, organic pollutants, pathogens, thermal pollution, and radioactive pollutants etc. In the current review an endeavor has been made to recognize the water pollution based on biological and chemical indicator and categorize the water pollutant on the basis of different source and origin. A brief discussion on different water pollutants, their source in atmosphere and impact on environment and human health is also done in this study. In this study a concise discussion has been done on some traditional water pollutants like nutrients (NO3 and PO4), Halogen (Cl, Br and F), heavy metals (Fe, Mn, Al, Cu, Zn, Pb, Cd, Cr, Ni and Hg), organic pollutants (POPs, EDS and pesticides), and microbial pollutants. Some emerging crisis related to water pollution in recent past is like microplastic, thermal pollution, radioactive pollution and suspended solids and sediments are also included in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iqbal, M. A., & Gupta, S. G. (2009). Studies on heavy metal ion pollution of ground water sources as an effect of municipal solid waste dumping. African Journal of Basic & Applied Sciences, 1(5–6), 117–122.

    Google Scholar 

  2. Maruyama, S., Ikoma, M., Genda, H., Hirose, K., Yokoyama, T., & Santosh, M. (2013). The naked planet Earth: Most essential pre-requisite for the origin and evolution of life. Geoscience Frontiers, 4(2), 141–165.

    Article  CAS  Google Scholar 

  3. Finney, J. L. (2004). Water? What’s so special about it? Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences359(1448), 1145–1165.

    Google Scholar 

  4. Ripl, W. (2003). Water: The bloodstream of the biosphere. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences358(1440), 1921–1934.

    Google Scholar 

  5. Jinwal, A., & Dixit, S. (2008). Pre-and post-monsoon variation in physico-chemical characteristics in groundwater quality of Bhopal “The City of Lakes” India. Asian Journal of Experimental Sciences, 22(3), 311–316.

    Google Scholar 

  6. Shiklomanov, I. A., & Rodda, J. C. eds., (2004). World water resources at the beginning of the twenty-first century. Cambridge University Press.

    Google Scholar 

  7. World Health Organization (1997). Guideline for drinking water quality, 2nd edn., Vol. 2 WHO, Geneva, Health criteria and other supporting informations, pp 940–949.

    Google Scholar 

  8. Hancock, P. J., Boulton, A. J., & Humphreys, W. F. (2005). Aquifers and hyporheic zones: Towards an ecological understanding of groundwater. Hydrogeology Journal, 13(1), 98–111.

    Article  CAS  Google Scholar 

  9. Huang, G., Sun, J., Zhang, Y., Chen, Z., & Liu, F. (2013). Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China. Science of the Total Environment, 463, 209–221.

    Article  CAS  Google Scholar 

  10. Raju, N. J., Shukla, U. K., & Ram, P. (2011). Hydrogeochemistry for the assessment of groundwater quality in Varanasi: A fast-urbanizing center in Uttar Pradesh, India. Environmental Monitoring and Assessment, 173(1–4), 279–300.

    Article  CAS  Google Scholar 

  11. Maria, A. (2003, October). The costs of water pollution in India. In Conference on Market Development of Water and Waste Technologies Through Environmental Economics (pp. 30–31).

    Google Scholar 

  12. Madhav, S., Ahamad, A., Kumar, A., Kushawaha, J., Singh, P., & Mishra, P. K. (2018). Geochemical assessment of groundwater quality for its suitability for drinking and irrigation purpose in rural areas of Sant Ravidas Nagar (Bhadohi), Uttar Pradesh. Geology, Ecology, and Landscapes, 2(2), 127–136.

    Article  Google Scholar 

  13. Madhav, S., Ahamad, A., Singh, P., & Mishra, P. K. (2018). A review of textile industry: Wet processing, environmental impacts, and effluent treatment methods. Environmental Quality Management, 27(3), 31–41.

    Article  Google Scholar 

  14. Chalew, T. (2006). Chemical indicators of surface water pollution (Doctoral dissertation, The University of North Carolina at Chapel Hill).

    Google Scholar 

  15. Abdulla, F. A., Abu-Dieyeh, M. H., & Qnais, E. (2008). Human activities and ecosystem health. In Environmental management, sustainable development and human health, p. 341.

    Google Scholar 

  16. López-López, E., & Sedeño-Díaz, J. E. (2015). Biological indicators of water quality: The role of fish and macroinvertebrates as indicators of water quality. In Environmental indicators (pp. 643–661). Dordrecht: Springer.

    Google Scholar 

  17. Baba, A., & Tayfur, G. (2011). Groundwater contamination and its effect on health in Turkey. Environmental Monitoring and Assessment, 183(1–4), 77–94.

    Article  CAS  Google Scholar 

  18. Raju, N. J. (2007). Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah District, Andhra Pradesh, South India. Environmental Geology, 52(6), 1067–1074.

    Article  CAS  Google Scholar 

  19. McKinney, M. L., & Schoch, R. M. (2003). Environmental science: Systems and solutions. Jones & Bartlett Learning.

    Google Scholar 

  20. Behera, B., & Reddy, V. R. (2002). Environment and accountability: Impact of industrial pollution on rural communities. Economic and Political Weekly, 257–265.

    Google Scholar 

  21. Buechler, S., & Mekala, G. D. (2005). Local responses to water resource degradation in India: Groundwater farmer innovations and the reversal of knowledge flows. The Journal of Environment & Development, 14(4), 410–438.

    Article  Google Scholar 

  22. Ahamad, A., Madhav, S., Singh, P., Pandey, J., & Khan, A. H. (2018). Assessment of groundwater quality with special emphasis on nitrate contamination in parts of Varanasi City, Uttar Pradesh, India. Applied Water Science, 8(4), 115.

    Article  CAS  Google Scholar 

  23. Taneja, P., Labhasetwar, P., & Nagarnaik, P. (2019). Nitrate in drinking water and vegetables: Intake and risk assessment in rural and urban areas of Nagpur and Bhandara districts of India. Environmental Science and Pollution Research, 26(3), 2026–2037.

    Article  CAS  Google Scholar 

  24. Wakida, F. T., & Lerner, D. N. (2005). Non-agricultural sources of groundwater nitrate: A review and case study. Water Research, 39(1), 3–16.

    Article  CAS  Google Scholar 

  25. Vough, L. R., Cassel, E. K., & Barao, S. M. (2006). Nitrate poisoning of livestock causes and prevention.

    Google Scholar 

  26. Walker, R. (1990). Nitrates, nitrites and N-nitrosocompounds: A review of the occurrence in food and diet and the toxicological implications. Food Additives & Contaminants, 7(6), 717–768.

    Article  CAS  Google Scholar 

  27. Wolfe, A. H., & Patz, J. A. (2002). Reactive nitrogen and human health: Acute and long-term implications. Ambio: A Journal of the Human Environment31(2), 120–126.

    Google Scholar 

  28. Stadler, S., Talma, A. S., Tredoux, G. & Wrabel, J. (2012). Identification of sources and infiltration regimes of nitrate in the semi-arid Kalahari: Regional differences and implications for groundwater management. Water Sa, 38(2), pp. 213–224.

    Google Scholar 

  29. Zhai, Y., Zhao, X., Teng, Y., Li, X., Zhang, J., Wu, J., et al. (2017). Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China. Ecotoxicology and Environmental Safety, 137, 130–142.

    Article  CAS  Google Scholar 

  30. Raju, N. J., Shukla, U. K., & Ram, P. (2011). Hydrogeochemistry for the assessment of groundwater quality in Varanasi: a fast-urbanizing center in Uttar Pradesh, India. Environ Moni Assess, 173(1–4), 279–300

    Google Scholar 

  31. Holman, I. P., Whelan, M. J., Howden, N. J., Bellamy, P. H., Willby, N. J., Rivas-Casado, M., et al. (2008). Phosphorus in groundwater—An overlooked contributor to eutrophication? Hydrological Processes: An International Journal, 22(26), 5121–5127.

    Article  Google Scholar 

  32. Singh, A. L., (2016). Nitrate and phosphate contamination in water and possible remedial measures. Environ Prob Plant, 3, 44–56.

    Google Scholar 

  33. Handa, B. K. (1990). Contamination of groundwaters by phosphates. Bhu-jal News, 5, 24–36.

    Google Scholar 

  34. Rao, N. S., & Prasad, P. R. (1997). Phosphate pollution in the groundwater of lower Vamsadhara river basin, India. Environmental Geology, 31(1–2), 117–122.

    Article  CAS  Google Scholar 

  35. Tiffany, M. A., Winchester, J. W., & Loucks, R. H. (1969). Natural and pollution sources of iodine, bromine, and chlorine in the Great Lakes. Journal (Water Pollution Control Federation), 1319–1329.

    Google Scholar 

  36. Sreedevi, P. D., Ahmed, S., Madé, B., Ledoux, E., & Gandolfi, J. M. (2006). Association of hydrogeological factors in temporal variations of fluoride concentration in a crystalline aquifer in India. Environmental Geology, 50(1), 1–11.

    Article  CAS  Google Scholar 

  37. Raju, N. J., Dey, S., Gossel, W., & Wycisk, P. (2012). Fluoride hazard and assessment of groundwater quality in the semi-arid Upper Panda River basin, Sonbhadra district, Uttar Pradesh, India. Hydrol sci, 57(7), 1433–1452.

    Google Scholar 

  38. Handa, B. K., (1975). Geochemistry and genesis of Fluoride‐Containing ground waters in India. Groundwater, 13(3), pp. 275–281.

    Google Scholar 

  39. Brindha, K., & Elango, L. (2013). Geochemistry of fluoride rich groundwater in a weathered granitic rock region, Southern India. Water Quality, Exposure and Health, 5(3), 127–138.

    Article  CAS  Google Scholar 

  40. Rao, N. S. (2009). Fluoride in groundwater, Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India. Environmental Monitoring and Assessment, 152(1–4), 47.

    Article  CAS  Google Scholar 

  41. Raju, N. J., Dey, S., & Das, K. (2009). Fluoride contamination in groundwaters of Sonbhadra District, Uttar Pradesh, India. Current Science (00113891)96(7).

    Google Scholar 

  42. Susheela, A. K., (1999). Fluorosis management programme in India. Curr Sci, 77(10), 1250–1256.

    Google Scholar 

  43. Dang, L. X., & Pettitt, B. M. (1987). Chloride ion pairs in water. Journal of the American Chemical Society, 109(18), 5531–5532.

    Article  CAS  Google Scholar 

  44. Davis, S. N., Whittemore, D. O. & Fabryka‐Martin, J. (1998). Uses of chloride/bromide ratios in studies of potable water. Groundwater, 36(2), 338–350.

    Google Scholar 

  45. Kim, K. Y., Seong, H., Kim, T., Park, K. H., Woo, N. C., Park, Y. S., Koh, G. W. & Park, W. B. (2006). Tidal effects on variations of fresh–saltwater interface and groundwater flow in a multilayered coastal aquifer on a volcanic island (Jeju Island, Korea). J Hydrol, 330(3-4), 525–542.

    Google Scholar 

  46. Duruibe, J. O., Ogwuegbu, M. O. C., & Egwurugwu, J. N. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2(5), 112–118.

    Google Scholar 

  47. Eshagberi, G.O., (2012). Toxic Effects of Heavy Metals on Crop Plants. Multi J Empir Res, 10.

    Google Scholar 

  48. Sawyer, C. N., McCarty, P. L., & Parkin, G. F. (1978). Chemistry for environmental engineers. New York. Mc Graw-Hill Book Company.

    Google Scholar 

  49. Applin, K. R., & Zhao, N. (1989). The kinetics of Fe (II) oxidation and well screen encrustation. Groundwater, 27(2), 168–174.

    Article  CAS  Google Scholar 

  50. Jain, C. K., Bandyopadhyay, A., & Bhadra, A. (2010). Assessment of ground water quality for drinking purpose, District Nainital, Uttarakhand, India. Environmental Monitoring and Assessment, 166(1–4), 663–676.

    Article  CAS  Google Scholar 

  51. Zoni, S., Albini, E., & Lucchini, R. (2007). Neuropsychological testing for the assessment of manganese neurotoxicity: A review and a proposal. American Journal of Industrial Medicine, 50(11), 812–830.

    Article  CAS  Google Scholar 

  52. McGrory, E. R., Brown, C., Bargary, N., Williams, N. H., Mannix, A., Zhang, C., et al. (2017). Arsenic contamination of drinking water in Ireland: A spatial analysis of occurrence and potential risk. Science of the Total Environment, 579, 1863–1875.

    Article  CAS  Google Scholar 

  53. Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58(1), 201–235.

    Article  CAS  Google Scholar 

  54. Oremland, R. S., & Stolz, J. F. (2005). Arsenic, microbes and contaminated aquifers. Trends in Microbiology, 13(2), 45–49.

    Article  CAS  Google Scholar 

  55. Baroni, F., Boscagli, A., Di Lella, L. A., Protano, G., & Riccobono, F. (2004). Arsenic in soil and vegetation of contaminated areas in southern Tuscany (Italy). Journal of Geochemical Exploration, 81(1–3), 1–14.

    Article  CAS  Google Scholar 

  56. Bhattacharya, P., Samal, A. C., Majumdar, J., & Santra, S. C. (2010). Arsenic contamination in rice, wheat, pulses, and vegetables: a study in an arsenic affected area of West Bengal, India. Water, Air, Soil Pollut, 213(1–4), 3–13.

    Google Scholar 

  57. Kumar, P., Kumar, M., Ramanathan, A. L., & Tsujimura, M. (2010). Tracing the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain, India: A source identification perspective. Environmental Geochemistry and Health, 32(2), 129–146.

    Article  CAS  Google Scholar 

  58. Vieira, B. R., Pintor, A. M., Boaventura, R. A., Botelho, C. M., & Santos, S. C. (2017). Arsenic removal from water using iron-coated seaweeds. Journal of Environmental Management, 192, 224–233.

    Article  CAS  Google Scholar 

  59. Nolan, J. (2003). Stable distributions: models for heavy-tailed data. Boston: Birkhauser.

    Google Scholar 

  60. Akpor, O. B. and Muchie, M. (2010). Bioremediation of polluted wastewater influent: phosphorus and nitrogen removal. Sci Res Essays, 5(21), 3222–3230.

    Google Scholar 

  61. Mondal, N. C., Singh, V. S., Puranik, S. C., & Singh, V. P. (2010). Trace element concentration in groundwater of Pesarlanka Island, Krishna Delta, India. Environmental Monitoring and Assessment, 163(1–4), 215–227.

    Article  CAS  Google Scholar 

  62. Jain, C. K., Bandyopadhyay, A., & Bhadra, A. (2010). Assessment of ground water quality for drinking purpose, District Nainital, Uttarakhand, India. Environ Monit Assess, 166(1–4), 663–676.

    Google Scholar 

  63. Gupta, N., Gaurav, S. S., & Kumar, A. (2013). Molecular basis of aluminium toxicity in plants: A review. American Journal of Plant Sciences, 4(12), 21.

    Article  Google Scholar 

  64. Barabasz, W., Albinska, D., Jaskowska, M., & Lipiec, J. (2002). Ecotoxicology of Aluminium. Polish Journal of Environmental Studies, 11(3), 199–203.

    CAS  Google Scholar 

  65. Rosseland, B. O., Eldhuset, T. D. and Staurnes, M. (1990). Environmental effects of aluminium. Environ Geochemistry Health, 12(1–2), 17–27.

    Google Scholar 

  66. Hunt, L. E., & Howard, A. G. (1994). Arsenic speciation and distribution in the Carnon estuary following the acute discharge of contaminated water from a disused mine. Marine Pollution Bulletin, 28(1), 33–38.

    Article  CAS  Google Scholar 

  67. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72.

    Article  CAS  Google Scholar 

  68. Borah, K. K., Bhuyan, B., & Sarma, H. P. (2010). Lead, arsenic, fluoride, and iron contamination of drinking water in the tea garden belt of Darrang district, Assam, India. Environ Monit Assess, 169(1-4), 347–352.

    Google Scholar 

  69. Biswas, J. K., Rai, M., Mondal, M., & Ingle, A. P. (2018). The flop side of using heavy metal (oids) s in the traditional medicine: Toxic insults and injury to human health. In Biomedical applications of metals (pp. 257–276). Cham: Springer.

    Google Scholar 

  70. Martin, S., & Griswold, W. (2009). Human health effects of heavy metals. Environmental Science and Technology Briefs for Citizens, 15, 1–6.

    Google Scholar 

  71. Henson, M. C., & Chedrese, P. J. (2004). Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Experimental Biology and Medicine, 229(5), 383–392.

    Article  CAS  Google Scholar 

  72. Koutras, G. A., Schneider, A. S., Hattori, M., & Valentine, W. N. (1965). Studies on chromated erythrocytes. Mechanisms of chromate inhibition of glutathione reductase. British Journal of Haematology11(3), 360–369.

    Google Scholar 

  73. Heikkinen, P., Korkka-Niemi, K., Lahti, M., & Salonen, V. P. (2002). Groundwater and surface water contamination in the area of the Hitura nickel mine, Western Finland. Environ Geol, 42(4), 313–329.

    Google Scholar 

  74. Chen, C. W., Chen, C. F., & Dong, C. D. (2012). Distribution and accumulation of mercury in sediments of Kaohsiung River Mouth, Taiwan. APCBEE Procedia, 1, 153–158.

    Article  CAS  Google Scholar 

  75. Ghangrekar, M. M., & Chatterjee, P. (2018). Water pollutants classification and its effects on environment. In Carbon nanotubes for clean water (pp. 11–26). Cham: Springer.

    Google Scholar 

  76. Patrick, L. (2002). Mercury toxicity and antioxidants: Part I: Role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity (Mercury toxicity). Alternative Medicine Review7(6), 456–472.

    Google Scholar 

  77. Hu, Q., & Hou, H. (2015). Tobacco smoke exposure biomarkers. CRC Press.

    Google Scholar 

  78. Yang, D. J., Zheng, Z. F., Zhu, H. Y., Liu, H. W., & Gao, X. P. (2008). Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Advanced Materials, 20(14), 2777–2781.

    Article  CAS  Google Scholar 

  79. Guan, Y. F., Wang, J. Z., Ni, H. G., & Zeng, E. Y. (2009). Organochlorine pesticides and polychlorinated biphenyls in riverine runoff of the Pearl River Delta, China: Assessment of mass loading, input source and environmental fate. Environmental Pollution, 157(2), 618–624.

    Article  CAS  Google Scholar 

  80. Bao, L. J., Maruya, K. A., Snyder, S. A., & Zeng, E. Y. (2012). China’s water pollution by persistent organic pollutants. Environmental Pollution, 163, 100–108.

    Article  CAS  Google Scholar 

  81. Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., Von Gunten, U., & Wehrli, B. (2010). Global water pollution and human health. Annual Review of Environment and Resources, 35, 109–136.

    Article  Google Scholar 

  82. Jung, C., Son, A., Her, N., Zoh, K., Cho, J., & Yoon, Y. (2015). Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review. Journal of Industrial and Engineering Chemistry, 27, 1–11.

    Google Scholar 

  83. Zia, M. S., Jamil, M., Qasim, M., Rahman, A., & Usman, K. (2008). Natural Resources Pollution and Degradation Due to Pesticide Use in Pakistan 12th International Conference on Integrated Diffuse Pollution Management (IWA DIPCON 2008). Khon Kaen University, Thailand, pp. 226–227.

    Google Scholar 

  84. Pimentel, D. (1995). Amounts of pesticides reaching target pests: Environmental impacts and ethics. Journal of Agricultural and Environmental Ethics, 8(1), 17–29.

    Article  Google Scholar 

  85. Khan, D. A., Shabbir, S., Majid, M., Naqvi, T. A., & Khan, F. A. (2010). Risk assessment of pesticide exposure on health of Pakistani tobacco farmers. Journal of Exposure Science & Environmental Epidemiology, 20(2), 196.

    Article  CAS  Google Scholar 

  86. Oplatowska, M., Donnelly, R. F., Majithiya, R. J., Kennedy, D. G., & Elliot, C. T. (2011). The potential for human exposure, direct and indirect, to the suspected carcinogenic triphenylmethane dye brilliant green from green paper towels. Food and Chemical Toxicology, 49, 1870–1876.

    Google Scholar 

  87. Inyinbor Adejumoke, A., Adebesin Babatunde, O., Abimbola, O., & Adelani-Akande Tabitha, A. (2018). Water pollution: Effects, prevention, and climatic impact. Water Challenges of an Urbanizing World, 33.

    Google Scholar 

  88. Kora, A. J., Rastogi, L., Kumar, S. J., & Jagatap, B. N. (2017). Physico-chemical and bacteriological screening of Hussain Sagar lake: An urban wetland. Water Science, 31, 24–33.

    Article  Google Scholar 

  89. Arthur, C., Baker, J. & Bamford, H. (2008). International research workshop on the occurrence, effects, and fate of microplastic marine debris. In Conference Proceedings. Sept (pp. 9-11).

    Google Scholar 

  90. Fendall, L. S., & Sewell, M. A. (2009). Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Marine Pollution Bulletin, 58(8), 1225–1228.

    Article  CAS  Google Scholar 

  91. Wright, S. L., Thompson, R. C. & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: a review. Environmental pollution, 178, 483–492.

    Google Scholar 

  92. Bonanno, G. & Orlando-Bonaca, M. (2018). Ten inconvenient questions about plastics in the sea. Environmental Science and Policy, 85, 146–154.

    Google Scholar 

  93. Blumer, M. (1969). Oil pollution of the ocean. In Oil on the sea (pp. 5–13). Boston, MA: Springer.

    Google Scholar 

  94. Nelson-Smith, A. (1971). The problem of oil pollution of the sea. In Advances in marine biology (Vol. 8, pp. 215–306). Academic Press.

    Google Scholar 

  95. Waters, T. F. (1995). Sediment in streams: Sources, biological effects, and control. American Fisheries Society.

    Google Scholar 

  96. Bilotta, G. S., & Brazier, R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. Water Research, 42(12), 2849–2861.

    Article  CAS  Google Scholar 

  97. Clark, J. R. (1969). Thermal pollution and aquatic life. Scientific American, 220(3), 18–27.

    Article  Google Scholar 

  98. Davidson, B., & Bradshaw, R. W. (1967). Thermal pollution of water systems. Environmental Science and Technology, 1(8), 618–630.

    Article  CAS  Google Scholar 

  99. Bo, A., Sarina, S., Liu, H., Zheng, Z., Xiao, Q., Gu, Y. … Zhu, H. (2016). Efficient removal of cationic and anionic radioactive pollutants from water using hydrotalcite-based getters. ACS Applied Materials & Interfaces8(25), 16503–16510.

    Google Scholar 

  100. Verma, S. K. (2019). Sources of nuclear pollutants and their controls. In Pollutants from energy sources (pp. 139–147). Singapore: Springer.

    Google Scholar 

  101. Samanta, P., Chandra, P., Dutta, S., Desai, A. V., & Ghosh, S. K. (2018). Chemically stable ionic viologen-organic network: An efficient scavenger of toxic oxo-anions from water. Chemical Science, 9(40), 7874–7881.

    Article  CAS  Google Scholar 

  102. Salbu, B., & Krekling, T. (1998). Characterisation of radioactive particles in the environment. Analyst, 123(5), 843–850.

    Google Scholar 

  103. National Research Council, & Safe Drinking Water Committee. (1977). Radioactivity in drinking water. In Drinking water and health (Vol. 1). US: National Academies Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sughosh Madhav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madhav, S. et al. (2020). Water Pollutants: Sources and Impact on the Environment and Human Health. In: Pooja, D., Kumar, P., Singh, P., Patil, S. (eds) Sensors in Water Pollutants Monitoring: Role of Material. Advanced Functional Materials and Sensors. Springer, Singapore. https://doi.org/10.1007/978-981-15-0671-0_4

Download citation

Publish with us

Policies and ethics