Skip to main content

Materials in Emerging Water Pollutants Detection

  • Chapter
  • First Online:
Sensors in Water Pollutants Monitoring: Role of Material

Part of the book series: Advanced Functional Materials and Sensors ((AFMS))

  • 1778 Accesses

Abstract

Contamination of water bodies is a global concern. Water quality monitoring has been carried out using different techniques and materials, in different parts of the world using a different kind of strategies. Investigating a wide range of potential organic pollutants that may be present in the aquatic environment is a huge challenge faced by environmental scientists. A wide-scope “universal” screening methods have been required for the detection and identification of a broad range of water pollutants, offering a piece of more realistic and complete information on undesirable compounds present in water samples. Most analytical techniques developed recently involve the application of chromatographic techniques coupled to mass spectrometry. Full spectrum acquisition methods such as high-resolution mass spectrometry offer the possibility for screening a huge number of pollutants. Biosensors have been well studied and emerged as sensitive and high specific tools for the detection of pollutants. Bio-monitoring has also emerged as effective techniques in environmental analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agüera, A., Bueno, M. J. M., & Fernández-Alba, A. R. (2013). New trends in the analytical determination of emerging contaminants and their transformation products in environmental waters. Environmental Science and Pollution Research, 20(6), 3496–3515.

    Article  CAS  Google Scholar 

  2. Al-Qaim, F. F., Abdullah, M. P., Othman, M. R., Latip, J., & Zakaria, Z. (2014). Multi-residue analytical methodology-based liquid chromatography-time-of-flight-mass spectrometry for the analysis of pharmaceutical residues in surface water and effluents from sewage treatment plants and hospitals. Journal of Chromatography A, 1345, 139–153.

    Article  CAS  Google Scholar 

  3. Alvarez-Puebla, R. A., & Liz-Marzán, L. M. (2012). SERS detection of small inorganic molecules and ions. Angewandte Chemie International Edition, 51(45), 11214–11223.

    Article  CAS  Google Scholar 

  4. Arisido, M. W. (2015). Functional data analysis for environmental pollutants and health.

    Google Scholar 

  5. Asadnia, M., Kottapalli, A. G. P., Karavitaki, K. D., Warkiani, M. E., Miao, J., Corey, D. P., et al. (2016). From biological cilia to artificial flow sensors: Biomimetic soft polymer nanosensors with high sensing performance. Scientific Reports, 6, 32955.

    Article  CAS  Google Scholar 

  6. Asadnia, M., Myers, M., Umana-Membreno, G. A., Sanders, T. M., Mishra, U. K., Nener, B. D., et al. (2017). Ca2+ detection utilising AlGaN/GaN transistors with ion-selective polymer membranes. Analytica Chimica Acta, 987, 105–110.

    Article  CAS  Google Scholar 

  7. Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4(10), 634.

    Article  CAS  Google Scholar 

  8. Bantz, K. C., Meyer, A. F., Wittenberg, N. J., Im, H., Kurtuluş, Ö., Lee, S. H., et al. (2011). Recent progress in SERS biosensing. Physical Chemistry Chemical Physics, 13(24), 11551–11567.

    Article  CAS  Google Scholar 

  9. Berlioz-Barbier, A., Vauchez, A., Wiest, L., Baudot, R., Vulliet, E., & Cren-Olivé, C. (2014). Multi-residue analysis of emerging pollutants in sediment using QuEChERS-based extraction followed by LC-MS/MS analysis. Analytical and Bioanalytical Chemistry, 406(4), 1259–1266.

    Article  CAS  Google Scholar 

  10. Biver, E., Durosier-Izart, C., Chevalley, T., van Rietbergen, B., Rizzoli, R., & Ferrari, S. (2018). Evaluation of radius microstructure and areal bone mineral density improves fracture prediction in postmenopausal women. Journal of Bone and Mineral Research, 33(2), 328–337.

    Article  Google Scholar 

  11. Bizkarguenaga, E., Ros, O., Iparraguirre, A., Navarro, P., Vallejo, A., Usobiaga, A., et al. (2012). Solid-phase extraction combined with large volume injection-programmable temperature vaporization–gas chromatography–mass spectrometry for the multiresidue determination of priority and emerging organic pollutants in wastewater. Journal of Chromatography A, 1247, 104–117.

    Article  CAS  Google Scholar 

  12. Buchberger, W. W. (2011). Current approaches to trace analysis of pharmaceuticals and personal care products in the environment. Journal of Chromatography A, 1218(4), 603–618.

    Article  CAS  Google Scholar 

  13. Cai, X., Gao, X., Wang, L., Wu, Q., & Lin, X. (2013). A layer-by-layer assembled and carbon nanotubes/gold nanoparticles-based bienzyme biosensor for cholesterol detection. Sensors and Actuators B: Chemical, 181, 575–583.

    Article  CAS  Google Scholar 

  14. Cao, S., Sun, G., Zhang, Z., Chen, L., Feng, Q., Fu, B., et al. (2011). Greening China naturally. Ambio, 40(7), 828–831.

    Article  Google Scholar 

  15. Capozzi, M. E., DiMarchi, R. D., Tschöp, M. H., Finan, B., & Campbell, J. E. (2018). Targeting the incretin/glucagon system with triagonists to treat diabetes. Endocrine Reviews, 39(5), 719–738.

    Article  Google Scholar 

  16. Cavaliere, C., Capriotti, A. L., Ferraris, F., Foglia, P., Samperi, R., Ventura, S., et al. (2016). Multiresidue analysis of endocrine-disrupting compounds and perfluorinated sulfates and carboxylic acids in sediments by ultra-high-performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1438, 133–142.

    Article  CAS  Google Scholar 

  17. Cesa-Bianchi, N., Gentile, C., & Orabona, F. (2009, June). Robust bounds for classification via selective sampling. In Proceedings of the 26th Annual International Conference on Machine Learning (pp. 121–128). ACM.

    Google Scholar 

  18. Chen, F., Ehlerding, E. B., & Cai, W. (2014). Theranostic nanoparticles. Journal of Nuclear Medicine, 55(12), 1919–1922.

    Article  CAS  Google Scholar 

  19. Chen, H., Brayman, A. A., Kreider, W., Bailey, M. R., & Matula, T. J. (2011). Observations of translation and jetting of ultrasound-activated microbubbles in mesenteric microvessels. Ultrasound in Medicine and Biology, 37(12), 2139–2148.

    Article  Google Scholar 

  20. Chen, J., Zheng, A., Chen, A., Gao, Y., He, C., Kai, X., et al. (2007). A functionalized gold nanoparticles and Rhodamine 6G based fluorescent sensor for high sensitive and selective detection of mercury (II) in environmental water samples. Analytica Chimica Acta, 599(1), 134–142.

    Article  CAS  Google Scholar 

  21. Chen, S., Yuan, R., Chai, Y., Zhang, L., Wang, N., & Li, X. (2007). Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles. Biosensors & Bioelectronics, 22(7), 1268–1274.

    Article  CAS  Google Scholar 

  22. Cialla, D., März, A., Böhme, R., Theil, F., Weber, K., Schmitt, M., et al. (2012). Surface-enhanced Raman spectroscopy (SERS): Progress and trends. Analytical and Bioanalytical Chemistry, 403(1), 27–54.

    Article  CAS  Google Scholar 

  23. Cui, X., Zhu, G., Pan, Y., Shao, Q., Dong, M., Zhang, Y., et al. (2018). Polydimethylsiloxane-titania nanocomposite coating: Fabrication and corrosion resistance. Polymer, 138, 203–210.

    Article  CAS  Google Scholar 

  24. Cui, Z., Luan, X., Jiang, H., Li, Q., Xu, G., Sun, C., et al. (2018). Application of a bacterial whole cell biosensor for the rapid detection of cytotoxicity in heavy metal contaminated seawater. Chemosphere, 200, 322–329.

    Article  CAS  Google Scholar 

  25. Dalavoy, T. S., Wernette, D. P., Gong, M., Sweedler, J. V., Lu, Y., Flachsbart, B. R., et al. (2008). Immobilization of DNAzyme catalytic beacons on PMMA for Pb2+ detection. Lab on a Chip, 8(5), 786–793.

    Article  CAS  Google Scholar 

  26. Darbha, G. K., Singh, A. K., Rai, U. S., Yu, E., Yu, H., & Chandra Ray, P. (2008). Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. Journal of the American Chemical Society, 130(25), 8038–8043.

    Article  CAS  Google Scholar 

  27. Daunert, S., Barrett, G., Feliciano, J. S., Shetty, R. S., Shrestha, S., & Smith-Spencer, W. (2000). Genetically engineered whole-cell sensing systems: Coupling biological recognition with reporter genes. Chemical Reviews, 100(7), 2705–2738.

    Article  CAS  Google Scholar 

  28. Del Carmen Hurtado-Sánchez, M., Espinosa-Mansilla, A., & Durán-Merás, I. (2015). Influence of the presence of natural monosaccharides in the quantification of α-dicarbonyl compounds in high content sugar samples. A comparative study by ultra-high performance liquid chromatography–single quadrupole mass spectrometry using different derivatization reactions. Journal of Chromatography A, 1422, 117–127.

    Article  CAS  Google Scholar 

  29. Diplock, E. E., Alhadrami, H. A., & Paton, G. I. (2009). Application of microbial bioreporters in environmental microbiology and bioremediation. In Whole cell sensing system II (pp. 189–209). Berlin, Heidelberg: Springer.

    Google Scholar 

  30. Dong, Z., Sinha, R., & Richie, J. P., Jr. (2018). Disease prevention and delayed aging by dietary sulfur amino acid restriction: Translational implications. Annals of the New York Academy of Sciences, 1418(1), 44–55.

    Article  CAS  Google Scholar 

  31. Durán, N., Marcato, P. D., De Souza, G. I., Alves, O. L., & Esposito, E. (2007). Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. Journal of Biomedical Nanotechnology, 3(2), 203–208.

    Article  CAS  Google Scholar 

  32. Faghiri, F., & Ghorbani, F. (2019). Colorimetric and naked eye detection of trace Hg2+ ions in the environmental water samples based on plasmonic response of sodium alginate impregnated by silver nanoparticles. Journal of Hazardous Materials, 374, 329–340.

    Article  CAS  Google Scholar 

  33. Freeman, R., Finder, T., & Willner, I. (2009). Multiplexed analysis of Hg2+ and Ag+ ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations. Angewandte Chemie International Edition, 48(42), 7818–7821.

    Article  CAS  Google Scholar 

  34. Gao, J., Gu, H., & Xu, B. (2009). Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Accounts of Chemical Research, 42(8), 1097–1107.

    Article  CAS  Google Scholar 

  35. Ghosh, D., & Das, C. K. (2015). Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@ Ni foam: A high-energy-density aqueous asymmetric supercapacitor. ACS Applied Materials & Interfaces, 7(2), 1122–1131.

    Article  CAS  Google Scholar 

  36. Gorito, A. M., Ribeiro, A. R., Almeida, C. M. R., & Silva, A. M. (2017). A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environmental Pollution, 227, 428–443.

    Article  CAS  Google Scholar 

  37. Gosset, A., Durrieu, C., Renaud, L., Deman, A. L., Barbe, P., Bayard, R., et al. (2018). Xurography-based microfluidic algal biosensor and dedicated portable measurement station for online monitoring of urban polluted samples. Biosensors & Bioelectronics, 117, 669–677.

    Article  CAS  Google Scholar 

  38. Guo, L., Li, Z., Chen, H., Wu, Y., Chen, L., Song, Z., et al. (2017). Colorimetric biosensor for the assay of paraoxon in environmental water samples based on the iodine-starch color reaction. Analytica Chimica Acta, 967, 59–63.

    Article  CAS  Google Scholar 

  39. Guo, X. J., Hao, A. J., Han, X. W., Kang, P. L., Jiang, Y. C., & Zhang, X. J. (2011). The investigation of the interaction between ribavirin and bovine serum albumin by spectroscopic methods. Molecular Biology Reports, 38(6), 4185–4192.

    Article  CAS  Google Scholar 

  40. Hayat, A., & Marty, J. (2014). Disposable screen printed electrochemical sensors: Tools for environmental monitoring. Sensors, 14(6), 10432–10453.

    Article  CAS  Google Scholar 

  41. He, X., Liu, H. U. I. B. I. A. O., Li, Y., Wang, S., Li, Y., Wang, N., et al. (2005). Gold nanoparticle-based fluorometric and colorimetric sensing of copper (II) ions. Advanced Materials, 17(23), 2811–2815.

    Article  CAS  Google Scholar 

  42. Hennion, M. (2000). Sample handling strategies for the analysis of organic compounds in environmental water samples. In D. Barceló (Ed.), Techniques and instrumentation in analytical chemistry (pp. 3–71), Elsevier, 2017.

    Google Scholar 

  43. Huang, C. C., & Chang, H. T. (2006). Selective gold-nanoparticle-based “turn-on” fluorescent sensors for detection of mercury (II) in aqueous solution. Analytical Chemistry, 78(24), 8332–8338.

    Article  CAS  Google Scholar 

  44. Jarque, S., Bittner, M., Blaha, L., & Hilscherova, K. (2016). Yeast biosensors for detection of environmental pollutants: Current state and limitations. Trends in Biotechnology, 34(5), 408–419.

    Article  CAS  Google Scholar 

  45. Jouanneau, E., Wierinckx, A., Ducray, F., Favrel, V., Borson-Chazot, F., Honnorat, J., et al. (2012). New targeted therapies in pituitary carcinoma resistant to temozolomide. Pituitary, 15(1), 37–43.

    Article  CAS  Google Scholar 

  46. Jouanneau, S., Durand, M. J., & Thouand, G. (2012). Online detection of metals in environmental samples: Comparing two concepts of bioluminescent bacterial biosensors. Environmental Science and Technology, 46(21), 11979–11987.

    Article  CAS  Google Scholar 

  47. Kalogerakis, N., Arff, J., Banat, I. M., Broch, O. J., Daffonchio, D., Edvardsen, T., et al. (2015). The role of environmental biotechnology in exploring, exploiting, monitoring, preserving, protecting and decontaminating the marine environment. New Biotechnology, 32(1), 157–167.

    Article  CAS  Google Scholar 

  48. Kim, C. S., Choi, B. H., Seo, J. H., Lim, G., & Cha, H. J. (2013). Mussel adhesive protein-based whole cell array biosensor for detection of organophosphorus compounds. Biosensors & Bioelectronics, 41, 199–204.

    Article  CAS  Google Scholar 

  49. Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., & Salzberg, S. L. (2013). TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14(4), R36.

    Article  CAS  Google Scholar 

  50. Kim, L., Lee, D., Cho, H. K., & Choi, S. D. (2019). Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends in Environmental Analytical Chemistry, p.e00063.

    Google Scholar 

  51. Kolahchi, N., Braiek, M., Ebrahimipour, G., Ranaei-Siadat, S. O., Lagarde, F., & Jaffrezic-Renault, N. (2018). Direct detection of phenol using a new bacterial strain-based conductometric biosensor. Journal of Environmental Chemical Engineering, 6(1), 478–484.

    Article  CAS  Google Scholar 

  52. Kurelec, B., & Gupta, R. C. (1993). Biomonitoring of aquatic systems. IARC Scientific Publications, 124, 365–372.

    CAS  Google Scholar 

  53. Maleki, A. (2018). Green oxidation protocol: Selective conversions of alcohols and alkenes to aldehydes, ketones and epoxides by using a new multiwall carbon nanotube-based hybrid nanocatalyst via ultrasound irradiation. Ultrasonics Sonochemistry, 40, 460–464.

    Article  CAS  Google Scholar 

  54. Maleki, A., Eskandarpour, V., Rahimi, J., & Hamidi, N. (2019). Cellulose matrix embedded copper decorated magnetic bionanocomposite as a green catalyst in the synthesis of dihydropyridines and polyhydroquinolines. Carbohydrate Polymers, 208, 251–260.

    Article  CAS  Google Scholar 

  55. Maleki, B., Baghayeri, M., Ghanei-Motlagh, M., Zonoz, F. M., Amiri, A., Hajizadeh, F., et al. (2019). Polyamidoamine dendrimer functionalized iron oxide nanoparticles for simultaneous electrochemical detection of Pb2+ and Cd2+ ions in environmental waters. Measurement, 140, 81–88.

    Article  Google Scholar 

  56. Mandal, T. K., & Parvin, N. (2011). Rapid detection of bacteria by carbon quantum dots. Journal of Biomedical Nanotechnology, 7(6), 846–848.

    Article  CAS  Google Scholar 

  57. Neethirajan, S., Ragavan, V., Weng, X., & Chand, R. (2018). Biosensors for sustainable food engineering: Challenges and perspectives. Biosensors, 8(1), 23.

    Article  CAS  Google Scholar 

  58. Nikolaou, A. (2013). Pharmaceuticals and related compounds as emerging pollutants in water: Analytical aspects. Global NEST Journal, 15(1), 1–12.

    Article  Google Scholar 

  59. Pampanin, D. M., & Sydnes, M. O. (2013). Polycyclic aromatic hydrocarbons a constituent of petroleum: presence and influence in the aquatic environment. In Hydrocarbon. IntechOpen.

    Google Scholar 

  60. Pampanin, D. M., Larssen, E., Øysæd, K. B., Sundt, R. C., & Sydnes, M. O. (2014). Study of the bile proteome of Atlantic cod (Gadus morhua): Multi-biological markers of exposure to polycyclic aromatic hydrocarbons. Marine Environmental Research, 101, 161–168.

    Article  CAS  Google Scholar 

  61. Pampanin, D. M., Le Goff, J., & Grøsvik, B. E. (2013). DNA adducts in haddock and cod exposed to produced water (WCM 2011-laboratory exposure). IRIS Report, p. 111.

    Google Scholar 

  62. Pang, Q., Liang, X., Kwok, C. Y., & Nazar, L. F. (2016). Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy, 1(9), 16132.

    Article  CAS  Google Scholar 

  63. Peng, Y., Gautam, L., & Hall, S. W. (2019). The detection of drugs of abuse and pharmaceuticals in drinking water using solid-phase extraction and liquid chromatography-mass spectrometry. Chemosphere, 223, 438–447.

    Article  CAS  Google Scholar 

  64. Peng, Z., Xiong, C., Wang, W., Tan, F., Xu, Y., Wang, X., et al. (2017). Facile modification of nanoscale zero-valent iron with high stability for Cr (VI) remediation. Science of the Total Environment, 596, 266–273.

    Article  CAS  Google Scholar 

  65. Petrie, B., Youdan, J., Barden, R., & Kasprzyk-Hordern, B. (2016). Multi-residue analysis of 90 emerging contaminants in liquid and solid environmental matrices by ultra-high-performance liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 1431, 64–78.

    Article  CAS  Google Scholar 

  66. Ponamoreva, O. N., Kamanina, O. A., Alferov, V. A., Machulin, A. V., Rogova, T. V., Arlyapov, V. A., et al. (2015). Yeast-based self-organized hybrid bio-silica sol–gels for the design of biosensors. Biosensors & Bioelectronics, 67, 321–326.

    Article  CAS  Google Scholar 

  67. Qu, X., Alvarez, P. J., & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water Research, 47(12), 3931–3946.

    Article  CAS  Google Scholar 

  68. Radović, T., Grujić, S., Petković, A., Dimkić, M., & Laušević, M. (2015). Determination of pharmaceuticals and pesticides in river sediments and corresponding surface and ground water in the Danube River and tributaries in Serbia. Environmental Monitoring and Assessment, 187(1), 4092.

    Article  CAS  Google Scholar 

  69. Raman, C. V., & Krishnan, K. S. (1928). The optical analogue of the compton effect. Nature, 121(3053), 711.

    Article  CAS  Google Scholar 

  70. Rao, K. R., & Yip, P. (2014). Discrete cosine transform: Algorithms, advantages, applications. Academic Press.

    Google Scholar 

  71. Rasheed, T., Bilal, M., Nabeel, F., Iqbal, H. M., Li, C., & Zhou, Y. (2018). Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals. Science of the Total Environment, 615, 476–485.

    Article  CAS  Google Scholar 

  72. Ribeiro, A. R., Pedrosa, M., Moreira, N. F., Pereira, M. F., & Silva, A. M. (2015). Environmental friendly method for urban wastewater monitoring of micropollutants defined in the directive 2013/39/EU and Decision 2015/495/EU. Journal of Chromatography A, 1418, 140–149.

    Article  CAS  Google Scholar 

  73. Ribeiro, C., Ribeiro, A. R., & Tiritan, M. E. (2016). Occurrence of persistent organic pollutants in sediments and biota from Portugal versus European incidence: A critical overview. Journal of Environmental Science and Health, Part B, 51(3), 143–153.

    Article  CAS  Google Scholar 

  74. Rodayan, A., Afana, S., Segura, P. A., Sultana, T., Metcalfe, C. D., & Yargeau, V. (2016). Linking drugs of abuse in wastewater to contamination of surface and drinking water. Environmental Toxicology and Chemistry, 35(4), 843–849.

    Article  CAS  Google Scholar 

  75. Saber, R., & Pişkin, E. (2003). Investigation of complexation of immobilized metallothionein with Zn (II) and Cd (II) ions using piezoelectric crystals. Biosensors & Bioelectronics, 18(8), 1039–1046.

    Article  CAS  Google Scholar 

  76. Scognamiglio, V., Antonacci, A., Arduini, F., Moscone, D., Campos, E. V., Fraceto, L. F,. et al. (2019). An eco-designed paper-based algal biosensor for nanoformulated herbicide optical detection. Journal of Hazardous Materials.

    Google Scholar 

  77. Singh, A., Arya, S. K., Glass, N., Hanifi-Moghaddam, P., Naidoo, R., Szymanski, C. M., et al. (2010). Bacteriophage tailspike proteins as molecular probes for sensitive and selective bacterial detection. Biosensors & Bioelectronics, 26(1), 131–138.

    Article  CAS  Google Scholar 

  78. Stein, B., Baldwin, A. S., Jr., Ballard, D. W., Greene, W. C., Angel, P., & Herrlich, P. (1993). Cross-coupling of the NF-kappa B p65 and Fos/Jun transcription factors produces potentiated biological function. The EMBO Journal, 12(10), 3879–3891.

    Article  CAS  Google Scholar 

  79. Stein, J. E., Reichert, W. L., French, B., & Varanasi, U. (1993). 32P-postlabeling analysis of DNA adduct formation and persistence in English sole (Pleuronectes vetulus) exposed to benzo [a] pyrene and 7H-dibenzo [c, g] carbazole. Chemico-Biological Interactions, 88(1), 55–69.

    Article  CAS  Google Scholar 

  80. Sundaram, R. S., Engel, M., Lombardo, A., Krupke, R., Ferrari, A. C., Avouris, P., et al. (2013). Electroluminescence in single layer MoS2. Nano Letters, 13(4), 1416–1421.

    Article  CAS  Google Scholar 

  81. Thomaidis, N. S., Asimakopoulos, A. G., & Bletsou, A. A. (2012). Emerging contaminants: A tutorial mini-review. Global NEST Journal, 14(1), 72–79.

    Google Scholar 

  82. Tian, Y., Wei, R., Cai, B., Dong, J., Deng, B., & Xiao, Y. (2016). Cationic gemini pyrrolidinium surfactants based sweeping-micellar electrokinetic chromatography for simultaneous detection of nine organic pollutants in environmental water. Journal of Chromatography A, 1475, 95–101.

    Article  CAS  Google Scholar 

  83. Turemis, M., Silletti, S., Pezzotti, G., Sanchís, J., Farré, M., & Giardi, M. T. (2018). Optical biosensor based on the microalga-paramecium symbiosis for improved marine monitoring. Sensors and Actuators B: Chemical, 270, 424–432.

    Article  CAS  Google Scholar 

  84. Van Der Meer, J. R., & Belkin, S. (2010). Where microbiology meets microengineering: Design and applications of reporter bacteria. Nature Reviews Microbiology, 8(7), 511.

    Article  CAS  Google Scholar 

  85. Vasquez, M. I., Lambrianides, A., Schneider, M., Kümmerer, K., & Fatta-Kassinos, D. (2014). Environmental side effects of pharmaceutical cocktails: What we know and what we should know. Journal of Hazardous Materials, 279, 169–189.

    Article  CAS  Google Scholar 

  86. Vopálenská, I., Váchová, L., & Palková, Z. (2015). New biosensor for detection of copper ions in water based on immobilized genetically modified yeast cells. Biosensors & Bioelectronics, 72, 160–167.

    Article  CAS  Google Scholar 

  87. Wang, G., Xu, G., Zhu, Y., & Zhang, X. (2014). A “turn-on” carbon nanotube–Ag nanoclusters fluorescent sensor for sensitive and selective detection of Hg2+ with cyclic amplification of exonuclease III activity. Chemical Communications, 50(6), 747–750.

    Article  CAS  Google Scholar 

  88. Wang, Y., Jodoin, P. M., Porikli, F., Konrad, J., Benezeth, Y., & Ishwar, P. (2014). CDnet 2014: An expanded change detection benchmark dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 387–394).

    Google Scholar 

  89. Xie, J., Zheng, Y., & Ying, J. Y. (2009). Protein-directed synthesis of highly fluorescent gold nanoclusters. Journal of the American Chemical Society, 131(3), 888–889.

    Article  CAS  Google Scholar 

  90. Xu, T., Close, D. M., Sayler, G. S., & Ripp, S. (2013). Genetically modified whole-cell bioreporters for environmental assessment. Ecological Indicators, 28, 125–141.

    Article  CAS  Google Scholar 

  91. Yagur-Kroll, S., Bilic, B., & Belkin, S. (2010). Strategies for enhancing bioluminescent bacterial sensor performance by promoter region manipulation. Microbial Biotechnology, 3(3), 300–310.

    Article  CAS  Google Scholar 

  92. Yang, W., Gooding, J. J., He, Z., Li, Q., & Chen, G. (2007). Fast colorimetric detection of copper ions using L-cysteine functionalized gold nanoparticles. Journal of Nanoscience and Nanotechnology, 7(2), 712–716.

    Article  CAS  Google Scholar 

  93. Yudina, N. Y., Arlyapov, V. A., Chepurnova, M. A., Alferov, S. V., & Reshetilov, A. N. (2015). A yeast co-culture-based biosensor for determination of waste water contamination levels. Enzyme and Microbial Technology, 78, 46–53.

    Article  CAS  Google Scholar 

  94. Zhang, W., Asiri, A. M., Liu, D., Du, D., & Lin, Y. (2014). Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. TrAC Trends in Analytical Chemistry, 54, 1–10.

    Article  CAS  Google Scholar 

  95. Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., et al. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 20(12), 8472–8483.

    Article  CAS  Google Scholar 

  96. Zhang, Y., Wang, F., Liu, C., Wang, Z., Kang, L., Huang, Y., et al. (2018). Nanozyme decorated metal–organic frameworks for enhanced photodynamic therapy. ACS Nano, 12(1), 651–661.

    Article  CAS  Google Scholar 

  97. Zhou, Y., Wang, J., Gu, Z., Wang, S., Zhu, W., Aceña, J. L., et al. (2016). Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II–III clinical trials of major pharmaceutical companies: New structural trends and therapeutic areas. Chemical Reviews, 116(2), 422–518.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razia Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, R., Patel, V., Khan, Z. (2020). Materials in Emerging Water Pollutants Detection. In: Pooja, D., Kumar, P., Singh, P., Patil, S. (eds) Sensors in Water Pollutants Monitoring: Role of Material. Advanced Functional Materials and Sensors. Springer, Singapore. https://doi.org/10.1007/978-981-15-0671-0_14

Download citation

Publish with us

Policies and ethics