Skip to main content

TP53, TP53 Target Genes (DRAM, TIGAR), and Autophagy

  • Chapter
  • First Online:
Book cover Autophagy: Biology and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1206))

Abstract

The tumor suppressor gene Tp53 encodes p53, a pivotal transcription factor with a broad target gene repertoire. Induction and stabilization of p53 during DNA damage and oncogene activation function to induce cell cycle arrest, apoptosis, or senescence. These actions are a failsafe to counteract carcinogenesis but Tp53 also plays a key role in regulating different aspects of cell metabolism including autophagy. Autophagy or cellular “self-eating” involves the dismantling and remodeling of cellular components, activities which are fundamental in maintaining cellular homeostasis and in supporting cell growth. After providing an historical overview of Tp53 research, the purpose of this chapter is to review the different mechanistic aspects of Tp53’s role in autophagy and to highlight the key challenges which lie ahead. Tp53 functions are regulated by tight control of its cellular levels and notably, Tp53 can be both an activator or inhibitor of autophagy. Under stress conditions such as nutrient depletion or hypoxia, Tp53 contributes to autophagic activation by inhibiting mTOR signaling. Alternatively, p53 can interact with death-associated protein kinase 1 (DAPK1), acting to stabilize nuclear p53 amongst other functions including activation of the key autophagic mediator, Beclin-1. Under normal physiological conditions, Tp53 can inhibit autophagosome formation but stress conditions can also result in Tp53-mediated promotion of autophagy, demonstrating that Tp53 actions are highly context dependent. Tp53 target genes also play key opposing roles in autophagy induction or inhibition such as DRAM and TIGAR, respectively. Finally, the role of Tp53 mutants in autophagy regulation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120

    Article  CAS  Google Scholar 

  • Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134:451–460

    Article  CAS  Google Scholar 

  • Crighton D, Wilkinson S, Ryan KM (2007) DRAM links autophagy to p53 and programmed cell death. Autophagy 3:72–74

    Article  CAS  Google Scholar 

  • Feng X, Liu X, Zhang W, Xiao W (2011) p53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death. EMBO J 30:3397–3415

    Article  CAS  Google Scholar 

  • Feng ZH, Hu WW, de Stanchina E, Teresky AK, Jin SK, Lowe S, Levine AJ (2007) The regulation of AMPK beta 1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 67:3043–3053

    Article  CAS  Google Scholar 

  • Galluzzi L, Kepp O, Kroemer G (2010) A new role for cytoplasmic p53: binding and destroying double-stranded RNA. Cell Cycle 9:2491–2492

    Article  CAS  Google Scholar 

  • Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458:1127–1130

    Article  CAS  Google Scholar 

  • Harrison B, Kraus M, Burch L, Stevens C, Craig A, Gordon-Weeks P, Hupp TR (2008) DAPK-1 binding to a linear peptide motif in MAP1B stimulates autophagy and membrane blebbing. J Biol Chem 283:9999–10014

    Article  CAS  Google Scholar 

  • Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18:283–293

    Article  CAS  Google Scholar 

  • Liao JM, Cao B, Zhou X, Lu H (2014) New insights into p53 functions through its target microRNAs. J Mol Cell Biol 6:206–213

    Article  CAS  Google Scholar 

  • Liu CY, Zhang YH, Li RB, Zhou LY, An T, Zhang RC, Zhai M, Huang Y, Yan KW, Dong YH, Ponnusamy M, Shan C, Xu S, Wang Q, Zhang YH, Zhang J, Wang K (2018) LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat Commun 9

    Google Scholar 

  • Mah LY, O’Prey J, Baudot AD, Hoekstra A, Ryan KM (2012) DRAM-1 encodes multiple isoforms that regulate autophagy. Autophagy 8:18–28

    Article  CAS  Google Scholar 

  • Martoriati A, Doumont G, Alcalay M, Bellefroid E, Pelicci PG, Marine JC (2005) dapk1, encoding an activator of a p19ARF-p53-mediated apoptotic checkpoint, is a transcription target of p53. Oncogene 24:1461–1466

    Article  CAS  Google Scholar 

  • Morselli E, Shen S, Ruckenstuhl C, Bauer MA, Marino G, Galluzzi L, Criollo A, Michaud M, Maiuri MC, Chano T, Madeo F, Kroemer G (2011) p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle 10:2763–2769

    Article  CAS  Google Scholar 

  • Mrschtik M, O’Prey J, Lao LY, Long JS, Beaumatin F, Strachan D, O’Prey M, Skommer J, Ryan KM (2015) DRAM-3 modulates autophagy and promotes cell survival in the absence of glucose. Cell Death Differ 22:1714–1726

    Article  CAS  Google Scholar 

  • Reef S, Zalckvar E, Shifman O, Bialik S, Sabanay H, Oren M, Kimchi A (2006) A short mitochondrial form of p19ARF induces autophagy and caspase-independent cell death. Mol Cell 22:463–475

    Article  CAS  Google Scholar 

  • Xu JZ, Wang YF, Tan XR, Jing HJ (2012) MicroRNAs in autophagy and their emerging roles in crosstalk with apoptosis. Autophagy 8:873–882

    Article  CAS  Google Scholar 

  • Yang LX, Wang HY, Shen Q, Feng LF, Jin HC (2017) Long non-coding RNAs involved in autophagy regulation. Cell Death Dis 8

    Article  Google Scholar 

  • Yee KS, Wilkinson S, James J, Ryan KM, Vousden KH (2009) PUMA- and Bax-induced autophagy contributes to apoptosis. Cell Death Differ 16:1135–1145

    Article  CAS  Google Scholar 

  • Yoon JH, Her S, Kim M, Jang IS, Park J (2012) The expression of damage-regulated autophagy modulator 2 (DRAM2) contributes to autophagy induction. Mol Biol Rep 39:1087–1093

    Article  CAS  Google Scholar 

  • Zalckvar E, Berissi H, Eisenstein M, Kimchi A (2009a) Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 5:720–722

    Article  CAS  Google Scholar 

  • Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M, Sabanay H, Pinkas-Kramarski R, Kimchi A (2009b) DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 10:285–292

    Article  CAS  Google Scholar 

  • Zhai HY, Fesler A, Ju JF (2013) MicroRNA A third dimension in autophagy. Cell Cycle 12:246–250

    Article  CAS  Google Scholar 

  • Zhang J, Ney PA (2009) Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16:939–946

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mian Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, W., Chen, S., Thorne, R.F., Wu, M. (2019). TP53, TP53 Target Genes (DRAM, TIGAR), and Autophagy. In: Qin, ZH. (eds) Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1206. Springer, Singapore. https://doi.org/10.1007/978-981-15-0602-4_6

Download citation

Publish with us

Policies and ethics