Skip to main content

Regulation of Autophagy by mTOR Signaling Pathway

  • Chapter
  • First Online:
Autophagy: Biology and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1206))

Abstract

Autophagy plays a crucial role in maintaining cellular homeostasis, and is closely related to the occurrence of variety of human diseases. It is known that autophagy occurs in response to various environmental stresses such as nutrient deficiency, growth factor deficiency, and hypoxia. Induced autophagy eliminates the damage caused by these stresses and returns to normal levels when the stresses are relieved. To comprehend the induction of autophagy under various stress conditions and the effects of autophagy on the life processes of cells, it is necessary to understand how autophagy is regulated. Many studies have shown that a number of signal transduction pathways are involved in the regulation of autophagy. Among these pathways, some pathways converge at the target of rapamycin (TOR), a highly conserved kinase important for autophagy regulation. This review will focus on the role of TOR signaling pathway in the regulation of autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AKT:

v-akt murine thymoma viral oncogene homolog

AMBRA1:

Autophagy/beclin-1 regulator 1

AMPK:

AMP-activated protein kinase

Arf1:

Adenosine diphosphate ribosylation factor 1

ATG:

Autophagy-related genes

DAP1:

Death-associated protein 1

FKBP12:

FK506-binding protein, 12 kDa molecular weight

FRB:

FKBP12-Rapamycin Binding

GEF:

Guanine exchange factor

HAT:

Histone acetyltransferase

IGF1:

Insulin-like growth factor1

IRS:

Insulin receptor substrates

MITF:

Microphthalmia-associated transcription factor

mTOR:

Mammalian target of rapamycin, which has been renamed as mechanistic target of rapamycin

PDK1:

3-Phosphoinositide-dependent protein kinase 1

PDK2:

3-Phosphoinositide-dependent protein kinase 2

PI3K CI:

Phosphatidylinositol 3-kinase ClassI

PI3K C III:

Phosphatidylinositol 3-kinase Class III

PKK:

Phosphoinositide 3-kinase-related kinase

RB1CC1:

RB1-inducible coiled-coil protein 1

REDD1:

Regulated in development and DNA damage 1

TFEB:

Transcription factor EB

TFE3:

Transcription factor E3

TOR:

Target of rapamycin

TORC1:

Target of rapamycin complex 1

TORC2:

Target of rapamycin complex 2

References

  • Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM (2013) A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340:1100–1106

    Article  CAS  Google Scholar 

  • Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM (2012) Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150:1196–1208

    Article  CAS  Google Scholar 

  • Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K, Wyant GA, Wang T, Harper JW, Gygi SP, Sabatini DM (2016) The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165:153–164

    Article  CAS  Google Scholar 

  • Chen S, Han Q, Wang X, Yang M, Zhang Z, Li P, Chen A, Hu C, Li S (2013) IBP-mediated suppression of autophagy promotes growth and metastasis of breast cancer cells via activating mTORC2/Akt/FOXO3a signaling pathway. Cell Death Dis 4:e842

    Article  CAS  Google Scholar 

  • Deyoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW (2008) Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 22:239–251

    Article  CAS  Google Scholar 

  • di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G, Antonioli M, Pagliarini V, Matteoni S, Fuoco C, Giunta L, D’Amelio M, Nardacci R, Romagnoli A, Piacentini M, Cecconi F, Fimia GM (2010) The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol 191:155–168

    Article  Google Scholar 

  • Erbil S, Oral O, Mitou G, Kig C, Durmaz-Timucin E, Guven-Maiorov E, Gulacti F, Gokce G, Dengjel J, Sezerman OU, Gozuacik D (2016) RACK1 Is an interaction partner of ATG5 and a novel regulator of autophagy. J Biol Chem 291:16753–16765

    Article  CAS  Google Scholar 

  • Ganley IG, Lam DH, Wang J, Ding X, Chen S, Jiang X (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284:12297–12305

    Article  CAS  Google Scholar 

  • Gu X, Orozco JM, Saxton RA, Condon KJ, Liu GY, Krawczyk PA, Scaria SM, Harper JW, Gygi SP, Sabatini DM (2017) SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science 358:813–818

    Article  CAS  Google Scholar 

  • Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    Article  CAS  Google Scholar 

  • Koren I, Reem E, Kimchi A (2010) DAP1, a novel substrate of mTOR, negatively regulates autophagy. Curr Biol 20:1093–1098

    Article  CAS  Google Scholar 

  • Lee M, Kim JH, Yoon I, Lee C, Sichani MF, Kang JS, Kang J, Guo M, Lee KY, Han G, Kim S (2018) Coordination of the leucine-sensing Rag GTPase cycle by leucyl-tRNA synthetase in the mTORC1 signaling pathway. Proc Natl Acad Sci USA 115:E5279–E5288

    Article  CAS  Google Scholar 

  • Martina JA, Chen Y, Gucek M, Puertollano R (2012) MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8:903–914

    Article  CAS  Google Scholar 

  • Martina JA, Diab HI, Lishu L, Jeong-A L, Patange S, Raben N, Puertollano R (2014) The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal 7, ra9

    Article  Google Scholar 

  • Nguyen TP, Frank AR, Jewell JL (2017) Amino acid and small GTPase regulation of mTORC1. Cell Logist 7:e1378794

    Article  Google Scholar 

  • Ozturk DG, Kocak M, Akcay A, Kinoglu K, Kara E, Buyuk Y, Kazan H, Gozuacik D (2019) MITF-MIR211 axis is a novel autophagy amplifier system during cellular stress. Autophagy 15:375–390

    Article  CAS  Google Scholar 

  • Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A, Guan KL (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 15:741–750

    Article  CAS  Google Scholar 

  • Shen K, Choe A, Sabatini DM (2017) Intersubunit crosstalk in the Rag GTPase heterodimer enables mTORC1 to respond rapidly to amino acid availability. Mol Cell 68(552–565):e8

    Google Scholar 

  • Wan W, You Z, Xu Y, Zhou L, Guan Z, Peng C, Wong CCL, Su H, Zhou T, Xia H, Liu W (2017) mTORC1 phosphorylates acetyltransferase p300 to regulate autophagy and lipogenesis. Mol Cell 68(323–335):e6

    Google Scholar 

  • Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR, Sabatini DM (2016) Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351:43–48

    Article  CAS  Google Scholar 

  • Wolfson RL, Chantranupong L, Wyant GA, Gu X, Orozco JM, Shen K, Condon KJ, Petri S, Kedir J, Scaria SM, Abu-Remaileh M, Frankel WN, Sabatini DM (2017) KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature 543:438–442

    Article  CAS  Google Scholar 

  • Wyant GA, Abu-Remaileh M, Wolfson RL, Chen WW, Freinkman E, Danai LV, Vander Heiden MG, Sabatini DM (2017) mTORC1 Activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient. Cell, 171:642–654e12

    Article  Google Scholar 

  • Yahiro K, Tsutsuki H, Ogura K, Nagasawa S, Moss J, Noda M (2014) DAP1, a negative regulator of autophagy, controls SubAB-mediated apoptosis and autophagy. Infect Immun 82:4899–4908

    Article  Google Scholar 

  • Zhang T, Wang R, Wang Z, Wang X, Wang F, Ding J (2017) Structural basis for regulator functioning as a scaffold in membrane-anchoring of Rag GTPases and mTORC1. Nat Commun 8:1394

    Article  Google Scholar 

  • Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334:678–683

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y., Zhang, H. (2019). Regulation of Autophagy by mTOR Signaling Pathway. In: Qin, ZH. (eds) Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1206. Springer, Singapore. https://doi.org/10.1007/978-981-15-0602-4_3

Download citation

Publish with us

Policies and ethics