Skip to main content

Autophagy in Development and Differentiation

  • Chapter
  • First Online:
Book cover Autophagy: Biology and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1206))

Abstract

Autophagy is crucial in the differentiation and development of both mammals and invertebrates, as a rapid response to environmental and hormonal stimuli. Autophagy is also important for intracellular renewal, maintaining the health of terminally differentiated cells. Studies of Drosophila, Caenorhabditis elegans, and other species revealed abnormal autophagy lead to developmental and differential abnormality, including those in salivary glands and midgut development, protein aggregation, removal of apoptotic cell corpses, and development of dauer and synapse. Autophagy also participates in the development of mammalian embryos before implantation into the uterus, adaption to the nascent hunger environment, blood cells production, and cell differentiation in adipogenesis. Autophagy found in various stem cells, like hematopoietic stem cells, bone marrow mesenchymal stem cells and neural stem cells (NSCs), is tightly associated with their self-renewal, directed differentiation, and senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-MA:

3-methyladenine

Ambra1:

Activating molecule in Beclin-1-regulated autophagy

AMPK:

Adenosine 5′-monophosphate (AMP)-activated protein kinase

ATG:

Autophagy-associated gene

ATP:

Adenosine triphosphate

CAV:

Caveolin-1

CDK:

Cycling-dependent kinase

CMA:

Chaperone-mediated autophagy

CR:

Calorie restriction

CSC:

Cancer stem cell

DCIS:

Ductal carcinoma in situ

DNA:

Deoxyribonucleic acid

DP110:

Crosophila PI3K 110 subunit

EMT:

Epithelial mesenchymal transition

ESCs:

Embryonic stem cells

FGF:

Fibroblast growth factor

GABARAP:

Gamma-aminobutyric acid receptor-associated protein

GFER:

Growth factor, augmenter of liver regeneration

GFP:

Green fluorescent protein

GTP:

Guanosine triphosphate

HDAC:

Histone deacetylase

HSCs:

Hematopoietic stem cells

LC3:

Microtubule-associated protein 1 light chain 3

LIF:

Leukemia inhibitory factor

LT-HSC:

Long-term stem cell

MDS:

Myelodysplastic syndrome

MEF:

Mouse embryonic fibroblast

MHC:

Major histocompatibility complex

MOs:

Membranous organelles

mRNA:

Messenger ribonucleic acid

MSCs:

Bone marrow-derived mesenchymal stem cells

mtDNA:

Mitochondrial deoxyribonucleic acid

mTOR:

Mammalian target of rapamycin

NAC:

N-acetyl cysteine

NADPH:

Reduced form of nicotinamide adenine dinucleotide phosphate

NSCs:

Neural stem cells

PRMT:

Protein arginine methyltransferase

PS:

Phosphatidyl serine

Rab32:

Ras-related protein rab-32

RAS:

Rat sarcoma viral oncogene 

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

SEAP-1:

Sekretiertealkalische phosphatase-1

siRNA:

Small interfering RNA

SVZ:

Subventricular zone

TOR:

Target of rapamycin

TSCs:

Tumor stem cells

UCP:

Uncoupling protein

ULK1/2:

UNC-51-like kinase 1 and 2

UPS:

Ubiquitin-proteasome system

References

  • Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogier-Denis E (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276:35243–35246

    Article  CAS  PubMed  Google Scholar 

  • Baehrecke EH (2003) Autophagic programmed cell death in Drosophila. Cell Death Differ 10:940–945

    Article  CAS  PubMed  Google Scholar 

  • Baerga R, Zhang Y, Chen PH, Goldman S, Jin S (2009) Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice. Autophagy 5:1118–1130

    Article  CAS  PubMed  Google Scholar 

  • Bohensky J, Shapiro IM, Leshinsky S, Terkhorn SP, Adams CS, Srinivas V (2007) HIF-1 regulation of chondrocyte apoptosis: induction of the autophagic pathway. Autophagy 3:207–214

    Article  CAS  PubMed  Google Scholar 

  • Britton JS, Lockwood WK, Li L, Cohen SM, Edgar BA (2002) Drosophila’s insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev Cell 2:239–249

    Article  CAS  PubMed  Google Scholar 

  • Carames B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M (2010) Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum 62:791–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Liu Y, Liu R, Ikenoue T, Guan KL, Liu Y, Zheng P (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205:2397–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin TY, Kao CH, Wang HY, Huang WP, Ma KH, Chueh SH (2010) Inhibition of the mammalian target of rapamycin promotes cyclic AMP-induced differentiation of NG108-15 cells. Autophagy 6:1139–1156

    Article  CAS  PubMed  Google Scholar 

  • Cuervo AM, Dice JF (2000) When lysosomes get old. Exp Gerontol 35:119–131

    Article  CAS  PubMed  Google Scholar 

  • Denton D, Chang TK, Nicolson S, Shravage B, Simin R, Baehrecke EH, Kumar S (2012) Relationship between growth arrest and autophagy in midgut programmed cell death in Drosophila. Cell Death Differ 19:1299–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta S, Baehrecke EH (2008) Warts is required for PI3K-regulated growth arrest, autophagy, and autophagic cell death in Drosophila. Curr Biol 18:1466–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fathi A, Hatami M, Hajihosseini V, Fattahi F, Kiani S, Baharvand H, Salekdeh GH (2011) Comprehensive gene expression analysis of human embryonic stem cells during differentiation into neural cells. PLoS ONE 6:e22856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funderburk SF, Wang QJ, Yue Z (2010) The Beclin 1-VPS34 complex—at the crossroads of autophagy and beyond. Trends Cell Biol 20:355–362

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb RA, Carreira RS (2010) Autophagy in health and disease. 5. Mitophagy as a way of life. Am J Physiol Cell Physiol 299:C203–C210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan JL, Simon AK, Prescott M, Menendez JA, Liu F, Wang F, Wang C, Wolvetang E, Vazquez-Martin A, Zhang J (2013) Autophagy in stem cells. Autophagy 9:830–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  CAS  PubMed  Google Scholar 

  • Hernebring M, Brolen G, Aguilaniu H, Semb H, Nystrom T (2006) Elimination of damaged proteins during differentiation of embryonic stem cells. Proc Natl Acad Sci USA 103:7700–7705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshii T, Tadokoro Y, Naka K, Ooshio T, Muraguchi T, Sugiyama N, Soga T, Araki K, Yamamura K, Hirao A (2012) mTORC1 is essential for leukemia propagation but not stem cell self-renewal. J Clin Invest 122:2114–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122:421–434

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Yao W, Guan M, Dai W, Shahnazari M, Kar R, Bonewald L, Jiang JX, Lane NE (2011) Glucocorticoid dose determines osteocyte cell fate. FASEB J 25:3366–3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  • Kuo TC, Chen CT, Baron D, Onder TT, Loewer S, Almeida S, Weismann CM, Xu P, Houghton JM, Gao FB, Daley GQ, Doxsey S (2011) Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat Cell Biol 13:1214–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12:823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, Kiyama H, Yonezawa K, Yamanaka S (2004) mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 24:6710–6718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver L, Hue E, Priault M, Vallette FM (2012) Basal autophagy decreased during the differentiation of human adult mesenchymal stem cells. Stem Cells Dev 21:2779–2788

    Article  CAS  PubMed  Google Scholar 

  • Owusu-Ansah E, Banerjee U (2009) Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461:537–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984–4001

    Article  CAS  PubMed  Google Scholar 

  • Phadwal K, Watson AS, Simon AK (2013) Tightrope act: autophagy in stem cell renewal, differentiation, proliferation, and aging. Cell Mol Life Sci 70:89–103

    Article  CAS  PubMed  Google Scholar 

  • Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112:1809–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, Gilpin C, Levine B (2007) Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128:931–946

    Article  CAS  PubMed  Google Scholar 

  • Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786

    Article  CAS  PubMed  Google Scholar 

  • Rusten TE, Lindmo K, Juhasz G, Sass M, Seglen PO, Brech A, Stenmark H (2004) Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev Cell 7:179–192

    Article  CAS  PubMed  Google Scholar 

  • Sanchez CG, Penfornis P, Oskowitz AZ, Boonjindasup AG, Cai DZ, Dhule SS, Rowan BG, Kelekar A, Krause DS, Pochampally RR (2011) Activation of autophagy in mesenchymal stem cells provides tumor stromal support. Carcinogenesis 32:964–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sethe S, Scutt A, Stolzing A (2006) Aging of mesenchymal stem cells. Ageing Res Rev 5:91–116

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK, Tang Y, Pessin JE, Schwartz GJ, Czaja MJ (2009) Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 119:3329–3339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolzing A, Scutt A (2006) Age-related impairment of mesenchymal progenitor cell function. Aging Cell 5:213–224

    Article  CAS  PubMed  Google Scholar 

  • Strome S (2005) Specification of the germ line. WormBook 1–10

    Google Scholar 

  • Tracy K, Baehrecke EH (2013) The role of autophagy in Drosophila metamorphosis. Curr Top Dev Biol 103:101–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N (2008) Autophagy is essential for preimplantation development of mouse embryos. Science 321:117–120

    Article  CAS  PubMed  Google Scholar 

  • van Blerkom J, Brockway GO (1975) Qualitative patterns of protein synthesis in the preimplantation mouse embryo. I. Normal pregnancy. Dev Biol 44:148–157

    Article  PubMed  Google Scholar 

  • Vilchez D, Boyer L, Morantte I, Lutz M, Merkwirth C, Joyce D, Spencer B, Page L, Masliah E, Berggren WT, Gage FH, Dillin A (2012) Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 489:304–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Liu Z, Huang X (2012) Rab32 is important for autophagy and lipid storage in Drosophila. PLoS ONE 7:e32086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warr MR, Binnewies M, Flach J, Reynaud D, Garg T, Malhotra R, Debnath J, Passegue E (2013) FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494:323–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang P, Zhang H (2014) You are what you eat: multifaceted functions of autophagy during C. elegans development. Cell Res 24:80–91

    Article  CAS  PubMed  Google Scholar 

  • Young AR, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JF, Tavare S, Arakawa S, Shimizu S, Watt FM, Narita M (2009) Autophagy mediates the mitotic senescence transition. Genes Dev 23:798–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100:15077–15082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yan L, Zhou Z, Yang P, Tian E, Zhang K, Zhao Y, Li Z, Song B, Han J, Miao L, Zhang H (2009) SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 136:308–321

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Su P, Wang L, Chen J, Zimmermann M, Genbacev O, Afonja O, Horne MC, Tanaka T, Duan E, Fisher SJ, Liao J, Chen J, Wang F (2009) mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proc Natl Acad Sci USA 106:7840–7845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Jing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, YX., Han, XS., Jing, Q. (2019). Autophagy in Development and Differentiation. In: Qin, ZH. (eds) Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1206. Springer, Singapore. https://doi.org/10.1007/978-981-15-0602-4_22

Download citation

Publish with us

Policies and ethics