Skip to main content

Structural Basis of Autophagy Regulatory Proteins

  • Chapter
  • First Online:
Autophagy: Biology and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1206))

Abstract

Autophagy is an evolutionarily conserved lysosome-dependent intracellular degradation process that is essential for the maintenance of cellular homeostasis and adaptation to cellular stresses in eukaryotic cells. The most well-characterized type of autophagy, the macroautophagy, involves the progressive sequestration of cytoplasmic components into dedicated double-membraned vesicles called autophagosomes, which ultimately fuse with lysosomes to initiate the autophagic degradation of the sequestered cargo. In the past decade, our understanding of the molecular mechanism of macroautophagy has significantly evolved, with particular contributions from the biochemical and structural characterizations of autophagy-related proteins. In this chapter, we focus on some autophagy regulatory proteins involved in the macroautophagy pathway, summarize their currently known structures, and discuss their relevant molecular mechanisms from a perspective of structural biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonin W, Fasshauer D, Becker S, Jahn R, Schneider TR (2002) Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nat Struct Biol 9:107–111

    Article  CAS  PubMed  Google Scholar 

  • Backer JM (2008) The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J 410:1–17

    Article  CAS  PubMed  Google Scholar 

  • Backer JM (2016) The intricate regulation and complex functions of the Class III phosphoinositide 3-kinase Vps34. Biochem J 473:2251–2271

    Article  CAS  PubMed  Google Scholar 

  • Baker RW, Jeffrey PD, Zick M, Phillips BP, Wickner WT et al (2015) A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNARE assembly. Science 349:1111–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balderhaar HJK, Ungermann C (2013) CORVET and HOPS tethering complexes—coordinators of endosome and lysosome fusion. J Cell Sci 126:1307–1316

    Article  CAS  PubMed  Google Scholar 

  • Bas L, Papinski D, Licheva M, Torggler R, Rohringer S et al (2018) Reconstitution reveals Ykt6 as the autophagosomal SNARE in autophagosome-vacuole fusion. J Cell Biol 217:3656–3669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrese MF, Rajamohan F, Harris MS, Caspers NL, Magyar R et al (2014) Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms. Structure 22:1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Fan W, Lu Y, Ding X, Chen S et al (2012) A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Mol Cell 45:629–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen MB, Ji XZ, Liu YY, Zeng P, Xu XY et al (2017) Ulk1 over-expression in human gastric cancer is correlated with patients’ T classification and cancer relapse. Oncotarget 8:33704–33712

    PubMed  PubMed Central  Google Scholar 

  • Chen X, Liu M, Tian Y, Li J, Qi Y et al (2018) Cryo-EM structure of human mTOR complex 2. Cell Res 28:518–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng XF, Wang YL, Gong YK, Li FX, Guo YJ et al (2016) Structural basis of FYCO1 and MAP1LC3A interaction reveals a novel binding mode for Atg8-family proteins. Autophagy. 12:1330–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corona AK, Jackson WT (2018) Finding the middle ground for autophagic fusion requirements. Trends Cell Biol 28:869–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diao J, Liu R, Rong Y, Zhao M, Zhang J et al (2015) ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520:563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dooley HC, Razi M, Polson HEJ, Girardin SE, Wilson MI et al (2014) WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell 55:238–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farre JC, Subramani S (2016) Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat Rev Mol Cell Biol 17:537–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez AF, Lopez-Otin C (2015) The functional and pathologic relevance of autophagy proteases. J Clin Invest. 125:33–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Fritsch R, Downward J (2013) SnapShot: Class I PI3K isoform signaling. Cell 154(940–40):e1

    Google Scholar 

  • Fujioka Y, Suzuki SW, Yamamoto H, Kondo-Kakuta C, Kimura Y et al (2014) Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat Struct Mol Biol 21:513–521

    Article  CAS  PubMed  Google Scholar 

  • Ganley IG, Lam du H, Wang J, Ding X, Chen S et al (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284:12297–12305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao JQ, Reggiori F, Ungermann C (2018) A novel in vitro assay reveals SNARE topology and the role of Ykt6 in autophagosome fusion with vacuoles. J Cell Biol 217:3670–3682

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia D, Shaw RJ (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 66:789–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng JF, Klionsky DJ (2008) The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. EMBO Rep 9:859–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gowans GJ, Hawley SA, Ross FA, Hardie DG (2013) AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab 18:556–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green DR, Levine B (2014) To be or not to be? How selective autophagy and cell death govern cell fate. Cell 157:65–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie DG (2014) AMPK–sensing energy while talking to other signaling pathways. Cell Metab 20:939–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie DG, Schaffer BE, Brunet A (2016) AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol 26:190–201

    Article  CAS  PubMed  Google Scholar 

  • Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J et al (2005) Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2:9–19

    Article  CAS  PubMed  Google Scholar 

  • Hong SB, Kim BW, Lee KE, Kim SW, Jeon H et al (2011) Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat Struct Mol Biol 18:1323–U32

    Article  CAS  PubMed  Google Scholar 

  • Hong SB, Kim BW, Kim JH, Song HK (2012) Structure of the autophagic E2 enzyme Atg10. Acta Crystallogr D 68:1409–1417

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A et al (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley JH, Young LN (2017) Mechanisms of autophagy initiation. Annu Rev Biochem 86:225–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    Article  CAS  PubMed  Google Scholar 

  • Itakura E, Kishi-Itakura C, Mizushima N (2012) The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151:1256–1269

    Article  CAS  PubMed  Google Scholar 

  • Jahn R, Scheller RH (2006) SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7:631

    Article  CAS  PubMed  Google Scholar 

  • Jiang P, Nishimura T, Sakamaki Y, Itakura E, Hatta T et al (2014) The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17. Mol Biol Cell 25:1327–1337

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaiser SE, Mao K, Taherbhoy AM, Yu S, Olszewski JL et al (2012) Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat Struct Mol Biol 19:1242–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M et al (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150:1507–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125:25–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Kim YC, Fang C, Russell RC, Kim JH et al (2013) Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152:290–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YM, Jung CH, Seo M, Kim EK, Park JM et al (2015a) mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol Cell 57:207–218

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Hong SB, Lee JK, Han S, Roh K-H et al (2015b) Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners. Autophagy 11:75–87

    Article  PubMed  Google Scholar 

  • Klionsky DJ, Emr SD (2000) Cell biology—autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazarus MB, Novotny CJ, Shokat KM (2015) Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors. ACS Chem Biol 10:257–261

    Article  CAS  PubMed  Google Scholar 

  • Lee KM, Hwang SK, Lee JA (2013) Neuronal autophagy and neurodevelopmental disorders. Experimental Neurobiol 22:133–142

    Article  Google Scholar 

  • Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176:11–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Wang L, Zhou XE, Ke J, de Waal PW et al (2015) Structural basis of AMPK regulation by adenine nucleotides and glycogen. Cell Res 25:50–66

    Article  PubMed  CAS  Google Scholar 

  • Ma M, Liu JJ, Li Y, Huang Y, Ta N et al (2017) Cryo-EM structure and biochemical analysis reveal the basis of the functional difference between human PI3KC3-C1 and -C2. Cell Res 27:989–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mack HI, Zheng B, Asara JM, Thomas SM (2012) AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy 8:1197–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui T, Jiang P, Nakano S, Sakamaki Y, Yamamoto H et al (2018) Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17. J Cell Biol 217:2633–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H et al (2015) PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol Cell 57:39–54

    Article  CAS  PubMed  Google Scholar 

  • Mercer TJ, Gubas A, Tooze SA (2018) A molecular perspective of mammalian autophagosome biogenesis. J Biol Chem 293:5386–5395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metlagel Z, Otomo C, Takaesu G, Otomo T (2013) Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12. Proc Natl Acad Sci USA 110:18844–18849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel M, Schwarten M, Decker C, Nagel-Steger L, Willbold D et al (2015) The mammalian autophagy initiator complex contains 2 HORMA domain proteins. Autophagy 11:2300–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munson MJ, Allen GFG, Toth R, Campbell DG, Lucocq JM et al (2015) mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO J 34:2272–2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V et al (2013) mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 15:406–416

    Article  CAS  PubMed  Google Scholar 

  • Noda NN, Satoo K, Fujioka Y, Kumeta H, Ogura K et al (2011) Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol Cell 44:462–475

    Article  CAS  PubMed  Google Scholar 

  • Ogawa M, Yoshikawa Y, Kobayashi T, Mimuro H, Fukumatsu M et al (2011) A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe 9:376–389

    Article  CAS  PubMed  Google Scholar 

  • Oh WJ, Wu CC, Kim SJ, Facchinetti V, Julien LA et al (2010) mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J 29:3939–3951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otomo C, Metlagel Z, Takaesu G, Otomo T (2013) Structure of the human ATG12 similar to ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol 20:59–U79

    Article  CAS  PubMed  Google Scholar 

  • Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T et al (2010) FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol 188:253–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi S, Kim DJ, Stjepanovic G, Hurley JH (2015) Structure of the human Atg13-Atg101 HORMA heterodimer: an interaction hub within the ULK1 complex. Structure. 23:1848–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragusa MJ, Stanley RE, Hurley JH (2012) Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell 151:1501–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raiborg C, Wenzel EM, Pedersen NM, Olsvik H, Schink KO et al (2015) Repeated ER-endosome contacts promote endosome translocation and neurite outgrowth. Nature 520:234–+

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen MS, Mouilleron S, Shrestha BK, Wirth M, Lee R et al (2017) ATG4B contains a C-terminal LIR motif important for binding and efficient cleavage of mammalian orthologs of yeast Atg8. Autophagy 13:834–853

    Article  CAS  Google Scholar 

  • Ross FA, MacKintosh C, Hardie DG (2016) AMP-activated protein kinase: a cellular energy sensor that comes in 12 flavours. FEBS J 283:2987–3001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rostislavleva K, Soler N, Ohashi Y, Zhang L, Pardon E et al (2015) Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science 350:aac7365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Satoo K, Noda NN, Kumeta H, Fujioka Y, Mizushima N et al (2009) The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J 28:1341–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168:960–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F et al (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S et al (2012) A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 31:1095–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao D, Oka S, Liu T, Zhai P, Ago T et al (2014) A redox-dependent mechanism for regulation of AMPK activation by Thioredoxin1 during energy starvation. Cell Metab 19:232–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA et al (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101:3329–3335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolz A, Ernst A, Dikic I (2014) Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16:495–501

    Article  CAS  PubMed  Google Scholar 

  • Sugawara K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y et al (2005) Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy. J Biol Chem 280:40058–40065

    Article  CAS  PubMed  Google Scholar 

  • Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 angstrom resolution. Nature 395:347–353

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Kaizuka T, Mizushima N, Noda NN (2015) Structure of the Atg101-Atg13 complex reveals essential roles of Atg101 in autophagy initiation. Nat Struct Mol Biol 22:572–580

    Article  CAS  PubMed  Google Scholar 

  • Tabata K, Matsunaga K, Sakane A, Sasaki T, Noda T et al (2010) Rubicon and PLEKHM1 negatively regulate the endocytic/autophagic pathway via a Novel Rab7-binding domain. Mol Biol Cell 21:4162–4172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takáts S, Glatz G, Szenci G, Boda A, Horváth GV et al (2018) Non-canonical role of the SNARE protein Ykt6 in autophagosome-lysosome fusion. PLoS Genet 14:e1007359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toyama EQ, Herzig S, Courchet J, Lewis Jr TL, Loson OC et al (2016) Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351:275–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turco E, Witt M, Abert C, Bock-Bierbaum T, Su MY et al (2019) FIP200 claw domain binding to p62 promotes autophagosome formation at ubiquitin condensates. Mol Cell

    Google Scholar 

  • Whitman M, Downes CP, Keeler M, Keller T, Cantley L (1988) Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332:644–646

    Article  CAS  PubMed  Google Scholar 

  • Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV et al (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472:230–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF et al (2013) Structural basis of AMPK regulation by small molecule activators. Nat Commun 4:3017

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Suzuki NN, Hanada T, Ichimura Y, Kumeta H et al (2007) The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J Biol Chem 282:8036–8043

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi M, Matoba K, Sawada R, Fujioka Y, Nakatogawa H et al (2012a) Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat Struct Mol Biol 19:1250–+

    Article  CAS  Google Scholar 

  • Yamaguchi M, Noda NN, Yamamoto H, Shima T, Kumeta H et al (2012b) Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Structure 20:1244–1254

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Fujioka Y, Suzuki SW, Noshiro D, Suzuki H et al (2016) The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes. Dev Cell 38:86–99

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ et al (2013) mTOR kinase structure, mechanism and regulation. Nature 497:217–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Wang J, Liu M, Chen X, Huang M et al (2016) 4.4 A Resolution Cryo-EM structure of human mTOR Complex 1. Protein Cell 7:878–887

    Article  CAS  Google Scholar 

  • Yang H, Jiang X, Li B, Yang HJ, Miller M et al (2017) Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature 552:368–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan HX, Russell RC, Guan KL (2013) Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy 9:1983–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pan, L., Liu, J., Li, Y. (2019). Structural Basis of Autophagy Regulatory Proteins. In: Qin, ZH. (eds) Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1206. Springer, Singapore. https://doi.org/10.1007/978-981-15-0602-4_15

Download citation

Publish with us

Policies and ethics