Skip to main content

Secondary Hypertension of Other Type

  • Chapter
  • First Online:
Secondary Hypertension

Abstract

Crush syndrome is a type of traumatic syndrome in which muscle-rich limbs are squeezed for a long time, causing rhabdomyolysis, leakage of muscle cell contents, and absorption into the blood, thereby causing systemic damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fang L, Ping F, Ye T, et al. Crush syndrome and acute failure after earthquake disaster. Chin J Pract Intern Med. 2008;28(7):598–600.

    Google Scholar 

  2. Gonzalez D. Crush syndrome. Crit Care Med. 2005;33:s34–41.

    Article  PubMed  Google Scholar 

  3. Wang H. Nephrology. Beijing: People’s Medical Publishing House; 2008.

    Google Scholar 

  4. Pan X, Zou S. Research progress in crush syndrome. China J Emerg Resusc Disaster Med. 2014;9(8):764–6. https://doi.org/10.3969/j.issn.1673-6966.2014.08.026.

    Article  Google Scholar 

  5. Yan Z, Yu S, Liu H. The latest progress of crush syndrome treatment. Chin J Clin (Electronic Ed). 2015;15:2901–6. https://doi.org/10.3877/cma.j.issn.1674-0785.2015.15.027.

    Article  CAS  Google Scholar 

  6. Peifu P, Wu X, Yan S, et al. Clinical study of continuous blood purification treatment for rhabdomyolysis. Chin Blood Purif. 2007;6(2):67–70.

    Google Scholar 

  7. Yonghua S. The first lecture on burns. Chin J Clin. 2006;34(08):20–3.

    Google Scholar 

  8. Xiaoping C, Jianping W. Surgery. 8th ed. Beijing: People’s Medical Publishing House; 2013.

    Google Scholar 

  9. Xiaoping C. Surgery. Version 2, vol. 1. Beijing: People’s Medical Publishing House; 2010.

    Google Scholar 

  10. Brusselaers N, Monstrey S, Vogelaers D, et al. Severe burn injury in Europe: a systematic review of the incidence, etiology, morbidity, and mortality. Crit Care. 2010;14(5):R188.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Diagnosis and treatment of secondary hypertension. 2005

    Google Scholar 

  12. Ping Y. Diagnosis and treatment of hypertension. Beijing: People’s Military Medical Press; 2000.

    Google Scholar 

  13. Lei SR, Huang XY, Long JH, et al. Analysis of hypertension after extensive burn. Chin J Phys. 2003;5(8):1034–5.

    Google Scholar 

  14. Liu M, Chen YL. Pediatric burns complicated with hypertension. Chin J Plast Surg. 1993;(2):157.

    Google Scholar 

  15. Lowrey GH. Sixth national burn seminar. Hypertension in children with burns. J Trauma Acute Care Surg. 1967;7(1):140–4.

    CAS  Google Scholar 

  16. Falkner B, Roven S, Declement FA, et al. Hypertension in children with burns. J Trauma. 1978;18(3):213.

    Article  CAS  PubMed  Google Scholar 

  17. Practical hypertension. 2007.

    Google Scholar 

  18. Li AO. Burn therapeutics. Beijing: People’s Medical Publishing House; 1995.

    Google Scholar 

  19. Li-Hua L, Jing L, Xiao-Yun Z. Correlation between cytokines and cardiovascular disease in SAS patients. Chin J Phys. 2002;4(8):803–5.

    Google Scholar 

  20. Jeschke MG, Chinkes DL, Finnerty CC, et al. Pathophysiologic response to severe burn injury. Ann Surg. 2008;248(3):387–401.

    PubMed  Google Scholar 

  21. Gooch JL, Sharma AC. Targeting the immune system to treat hypertension: where are we? Curr Opin Nephrol Hypertens. 2014;23(5):473–9.

    Article  CAS  PubMed  Google Scholar 

  22. Stewart IJ, Sosnov JA, Snow BD, et al. Hypertension after injury among burned combat veterans: a retrospective cohort study. Burns. 2017;43(2):290–6.

    Article  PubMed  Google Scholar 

  23. France CR, Ditto B. Risk for high blood pressure and decreased pain perception. Curr Dir Psychol Sci. 2010;5(4):120–5.

    Article  Google Scholar 

  24. Fang Z, Chen Y, Du F. Relationship between endocrine reaction changes and disease progression after severe burns—analysis of 20 cases. Chin J Burns. 1985;(2).

    Google Scholar 

  25. Zongcheng Y. Chinese burn surgery. Beijing: People’s Medical Publishing House; 2008.

    Google Scholar 

  26. Giannoni-Pastor A, Eiroa-Orosa FJ, Kinori SGF, et al. Prevalence and predictors of posttraumatic stress symptomatology among burn survivors: a systematic review and meta-analysis. J Burn Care Res. 2016;37(1):e79–89.

    Article  PubMed  Google Scholar 

  27. Mcfarlane AC. The long-term costs of traumatic stress: intertwined physical and psychological consequences. World Psychiatry. 2010;9(1):3–10.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kubzansky LD, Koenen KC, Jones C, et al. A prospective study of posttraumatic stress disorder symptoms and coronary heart disease in women. Health Psychol. 2009;28(1):125–30.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Holavanahalli R, Helm P, Kowalske K. Long-term outcomes in patients surviving large burns: the musculoskeletal system. J Burn Care Res. 2016;37(4):243–54.

    Article  PubMed  Google Scholar 

  30. Hagberg JM, Park JJ, Brown MD. The role of exercise training in the treatment of hypertension: an update. Sports Med. 2000;30(3):193–206.

    Article  CAS  PubMed  Google Scholar 

  31. Xiaodong Y, Wenjun L. Newly compiled burn complication management. Beijing: People’s Military Medical Press; 2005.

    Google Scholar 

  32. Wei X, Minjie Y, Guozhong L, et al. Pediatric burns complicated with hypertension. China Microcirc. 2001;5(4):303–4.

    Google Scholar 

  33. Varon J, Marik PE. Perioperative hypertension management. Vasc Health Risk Manag. 2008;4(3):615–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chinese Society of Cardiothoracic Anesthesia/Beijing Hypertension Prevention Association. Management expert consensus for perioperative hypertension. J Clin Anesthesiol. 2016;32(3):295–7.

    Google Scholar 

  35. Chen Y. Management strategy for perioperative hypertension. Chin J Hypertens. 2017;25(08):786–9.

    Google Scholar 

  36. Ge J, Xu Y, et al. Essential hypertension. In: Internal medicine. 8th ed. Beijing: People’s Medical Publishing House; 2013. p. 257–71.

    Google Scholar 

  37. Lien SF, Bisognano JD. Perioperative hypertension: defining at-risk patients and their management. Curr Hypertens Rep. 2012;14(5):432–41.

    Article  PubMed  Google Scholar 

  38. Vallance P, Chan N. Endothelial function and nitric oxide: clinical relevance. Heart. 2001;85(3):342–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wei L. Obstetrics and gynecology surgery essentials and complications. Beijing: Peking University Medical Press; 2012. p. 5–10.

    Google Scholar 

  40. Jian Li, Pengke Yan, Jie Chen. Perioperative blood pressure management medical-medicine expert consensus. Today Pharmacy 2019. p. 1–32.

    Google Scholar 

  41. Wright JT Jr, Fine LJ, Lackland DT, et al. Evidence supporting a systolic blood pressure goal of less than 150 mm Hg in patients aged 60 years or older: the minority view. Ann Intern Med. 2014;160(7):499–503.

    Article  PubMed  Google Scholar 

  42. Weber MA, Schiffrin EL, White WB, et al. Clinical practice guidelines for the management of hypertension in the community: a statement by the American Society of Hypertension and the International Society of Hypertension. J Clin Hypertens (Greenwich). 2014;16(1):14–26.

    Article  Google Scholar 

  43. Marik PE, Varon J. Perioperative hypertension: a review of current and emerging therapeutic agents. J Clin Anesth. 2009;21(3):220–9.

    Article  PubMed  Google Scholar 

  44. Writing Group of 2018 Chinese Guidelines for the Management of Hypertension, Chinese Hypertension League, Chinese Society of Cardiology, et al. 2018 Chinese guidelines for the management of hypertension. Chin J Cardiovasc Med. 2019;24(1):24–56. https://doi.org/10.3969/j.issn.1007-5410.2019.01.002.

    Article  Google Scholar 

  45. Chung KH, Cho MS, Jin H. Perioperative hypertension management during facelift under local anesthesia with intravenous hypnotics. Arch Plast Surg. 2017;44(4):276–82.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lin Y, Ma L. Blood pressure lowering effect of calcium channel blockers on perioperative hypertension: a systematic review and meta-analysis. Medicine (Baltimore). 2018;97(48):e13152.

    Article  CAS  Google Scholar 

  47. Walker S, Abbott T, Brown K, et al. Perioperative management of angiotensin-converting enzyme inhibitors and/or angiotensin receptor blockers: a survey of perioperative medicine practitioners. Peer J. 2018;6:e5061.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Park J, Kim J, Kwon JH, et al. Association between perioperative β-blocker use and clinical outcome of non-cardiac surgery in coronary revascularized patients without severe ventricular dysfunction or heart failure. PLoS One. 2018;13(8):e0201311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wright JT, Fube LT, Lackland DT, et al. Evidence supporting a systolic blood pressure goal of less than 150 mm Hg in patients aged 60 years or older: the minority view. Ann Intern Med. 2014;160:499–503.

    Article  PubMed  Google Scholar 

  50. Takase H, Tanaka T, Takayama S, et al. Recent changes in blood pressure levels, hypertension prevalence and treatment rates, and the rate of reaching target blood pressure in the elderly. Medicine (Baltimore). 2017;96(50):e9116.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hua Q, Fan L, Li J, Joint Committee for Guideline Revision. 2019 Chinese guideline for the management of hypertension in the elderly. J Geriatr Cardiol. 2019;16(2):67–99.

    PubMed  PubMed Central  Google Scholar 

  52. Chen X, Wang J. Perioperative management. In: Surgery. 8th ed. Beijing: People’s Medical Publishing House; 2013. p. 99–106.

    Google Scholar 

  53. Chinese Physician Association Emergency Physician Branch. China Emergency Hypertension Diagnosis and Treatment Expert Consensus (2017 revised edition). Chin J Pract Intern Med. 2018;38(05):421–33.

    Google Scholar 

  54. Neuroendocrine Tumor Expert Committee of Chinese Society of Clinical Oncology. Consensus of Chinese gastroenteropancreatic neuroendocrine tumor experts (2016 Edition). J Clin Oncol. 2016;21(10).

    Google Scholar 

  55. Yao JC, Hassan M, Phan A, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063–72.

    Article  PubMed  Google Scholar 

  56. Modlin IM, Lye KD, Kidd MA. 5-decade analysis of 13,715 carcinoid tumors. Cancer. 2003;97(4):934–59.

    Article  PubMed  Google Scholar 

  57. Linjie G, Chengwei T. Analysis of clinical research status of gastrointestinal and pancreatic neuroendocrine tumors in China. Gastroenterology. 17(5):276–8.

    Google Scholar 

  58. Wang YH, Lin Y, Xue L, et al. Relationship between clinical characteristics and survival of gastroenteropancreatic neuroendocrine neoplasms: A singleinstitution analysis (1995-2012) in South China. BMC Endocr Disord. 2012;12(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Modlin IZM, Kidd M, Skobek-Engel G, et al. The history and epidemiology of neuroendocrine tumors. In: Caplin M, Kvols L, editors. Handbook of neuroendocrine tumors. 1st ed. Bristol: BioScientifica; 2006. p. 7–37.

    Google Scholar 

  60. Pape UF, Berndt U, Muller-Nordhorn J, et al. Prognostic factors of longterm outcome in gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer. 2008;15(4):1083–97.

    Article  PubMed  Google Scholar 

  61. Pape UF, Bohmig M, Berndt U, et al. Survival and clinical outcome of patients with neuroendocrine tumors of the gastroenteropancreatic tract in a German Referral Center. Ann N Y Acad Sci. 2004;1014:222–33.

    Article  PubMed  Google Scholar 

  62. Ahmed A, Turner G, King B, et al. Midgut neuroendocrine tumours with liver metastases: results of the UKINETS study. Endocr Relat Cancer. 2009;16(3):885–94.

    Article  CAS  PubMed  Google Scholar 

  63. Expert Committee on Neuroendocrine Oncology, Chinese Society of Clinical Oncology. Consensus of Chinese experts on gastrointestinal, pancreatic and neuroendocrine oncology. J Clin Oncol. 2016;21(10):927–46.

    Google Scholar 

  64. Lenders JW, Duh QY, Eisenhofer G, et al. Pheochromocytoma and paraganglioma: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metabol. 2014;99:1915–42.

    Article  CAS  Google Scholar 

  65. Jun L, Hongzheng Z, Chunming Y, et al. Diagnosis and treatment of adrenal pheochromocytoma. J Chin Med Univ. 2002;31(3):230–1. https://doi.org/10.3969/j.ISSN.02584646.

    Article  Google Scholar 

  66. Reisch N, Peczkowska M, Januszewicz A, et al. Pheochromocytoma: presentation, diagnosis and treatment. J Hypertens. 2006;24:2331–9.

    Article  CAS  PubMed  Google Scholar 

  67. Wu D, Tischler AS, Lloyd RV, et al. Observer variation in the application of the Pheochromocytoma of the Adrenal Gland Scaled Score. Am J Surg Pathol. 2009;33:599–608.

    Article  PubMed  Google Scholar 

  68. Rufini V, Treglia G, Castaldi P, Perotti G, Giordano A. Comparison of metaiodobenzyl-guanidine scintigraphy with positron emission tomography in the diagnostic work-up of pheochromocytoma and paraganglioma: a systematic review. Q J Nucl Med Mol Imaging. 2013;57:122–33.

    CAS  PubMed  Google Scholar 

  69. El-Maouche D, Welch J, Agarwal SK, et al. A patient with MEN1 typical features and MEN2-like features. Int J Endocr Oncol. 2016;3(2):89–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yi J, Junfeng L. Advances in the study of gene methylation and demethylation in esophageal cancer. J Esophageal Surg. 2013;4:173–7.

    Google Scholar 

  71. Zheng F, Li M, Xiaorong S, et al. A case of Sipple syndrome. Shandong Pharm. 2006;46(3):79–82.

    Google Scholar 

  72. Alevizaki M, Saltiki K. Primary Hyperparathyroidism in MEN2 syndromes. Recent Results Cancer Res. 2015;20(4):179186.

    Google Scholar 

  73. Pacheco MC. Multiple Endocrine neoplasia: a genetically diverse group of familial tumor syndromes. J Pediatr Genet. 2016;5(2):89–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lemos MC, Thakker RV. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat. 2008;29(1):22–32.

    Article  CAS  PubMed  Google Scholar 

  75. Luzi E, Ciuffi S, Marini F, et al. Analysis of differentially expressed microRNAs in MEN1 parathyroid adenomas. Am J Transl Res. 2017;9(4):1743.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bhat M, Metrakos P, Cajal SRY, et al. Pancreatic neuroendocrine tumors. Endocr Res. 2017;36(1):35.

    Google Scholar 

  77. Libé R, Chanson P. Endocrine tumors of the pancreas (EPTs) in multiple endocrine neoplasia (MEN1): up-date on prognostic factors, diagnostic procedures and treatment. Ann Endo (Paris). 2007;68(Suppl 1):1–8.

    Google Scholar 

  78. Goroshi M, Bandgar T, Lila AR, et al. Multiple endocrine neoplasia type 1 syndrome: single centre experience from western India. Fam Cancer. 2016;15(4):617–24.

    Article  CAS  PubMed  Google Scholar 

  79. Raue F, Frank-Raue K. Epidemiology and clinical presentation of medullary thyroid carcinoma. Recent Res Can. 2015;204(7):61–90.

    Article  Google Scholar 

  80. Zupan A, Glava D. The development of rapid and accurate screening test for RET hotspot somatic and germline mutations in MEN2 syndromes. Exp Mol Pathol. 2015;99(3):416–25.

    Article  CAS  PubMed  Google Scholar 

  81. Zhao JQ, Chen ZG, Qi XP. Molecular diagnosis and comprehensive treatment of multiple endocrine neoplasia type 2 in Southeastern Chinese. Hered Cancer Clin Pract. 2015;13(1):5–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Frank-Raue K, Raue F. Hereditary medullary thyroid cancer genotype-phenotype correlation. Recent Results Cancer Res. 2015;204(3):139–56.

    Article  PubMed  Google Scholar 

  83. Tonelli F, Giudici F, Marcucci T, et al. Surgery in MEN 2A patients older than 5 years with micro-MTC: outcome at long-term follow-up. Otolaryngol Head Neck Surg. 2016;87(6):68–72.

    Google Scholar 

  84. Accardo G, Conzo G, Esposito D, et al. Genetics of medullary thyroid cancer: an overview. Int J Surg. 2017;41(Suppl 1):2–10.

    Article  Google Scholar 

  85. Pardi E, Mariotti S, Pellegata NS, et al. Functional characterization of a CDKN1B mutation in a Sardinian kindred with multiple endocrine neoplasia type 4 (MEN4). Endocr Connections. 2015;4(1):79–82.

    Article  CAS  Google Scholar 

  86. Felig P, et al. Endocrinology and metabolism. 2nd ed. New York: McGraw-Hill; 1987.

    Google Scholar 

  87. Fan X-H, Sun K, Zhou X-L, et al. Asociation of orthostatic hypertension and hypotension with target organ dam age in middle and old-aged hypertensive patients. Natl Med J China. 2011;4:220–4.

    Google Scholar 

  88. Lee H, Kim HA. Orthostatic hypertension: an underestimated cause of orthostatic intolerance. Clin Neurophysiol. 2016:S138824571600002X.

    Google Scholar 

  89. Hiitola P, Enlund H, Kettunen R, Sulkava R, Hartikainen S. Postural changes in blood pressure and the prevalence of orthostatic hypotension among home-dwelling elderly aged 75 years or older. J Hum Hypertens. 2009;23:33–9.

    Article  CAS  PubMed  Google Scholar 

  90. Veronese N, De Rui M, Bolzetta F, Zambon S, Corti MC, Baggio G, et al. Orthostatic changes in blood pressure and mortality in the elderly: the Pro.V.A study. Am J Hypertens. 2015;28(10):1248–56.

    Article  CAS  PubMed  Google Scholar 

  91. Ooi WL, Barrett S, Hossain M, Kelley-Gagnon M, Lipsitz LA. Patterns of orthostatic blood pressure change and their clinical correlates in a frail, elderly population. JAMA. 1997;277:1299–304.

    Article  CAS  PubMed  Google Scholar 

  92. Jodaitis L, Vaillant F, Snacken M, Boland B, Spinewine A, Dalleur O, et al. Orthostatic hypotension and associated conditions in geriatric inpatients. Acta Clin Belg. 2015;70:251–8.

    Article  CAS  PubMed  Google Scholar 

  93. Senard JM, Rai S, Lapeyre-Mestre M, Brefel C, Rascol O, Rascol A, et al. Prevalence of orthostatic hypotension in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997;63:584–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. van Hateren KJ, Kleefstra N, Blanker MH, Ubink-Veltmaat LJ, Groenier KH, Houweling ST, et al. Orthostatic hypotension, diabetes, and falling in older patients: a cross-sectional study. Br J Gen Pract. 2012;62:e696–702.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wu JS, Yang YC, Lu FH, Wu CH, Chang CJ. Population-based study on the prevalence and correlates of orthostatic hypotension/hypertension and orthostatic dizziness. Hypertens Res. 2008;31:897–904.

    Article  PubMed  Google Scholar 

  96. Lanier JB, Mote MB, Clay EC. Evaluation and management of orthostatic hypotension. Am Fam Physician. 2011;84(5):527–36.

    PubMed  Google Scholar 

  97. Voichanski S, Grossman C, Leibowitz A, et al. Orthostatic hypotension is associated with nocturnal change in systolic blood pressure. Am J Hypertens. 2012;25(2):159.

    Article  PubMed  Google Scholar 

  98. Minns AB, Clark RF, Schneir A. Guanfacine overdose resulting in initial hypertension and subsequent delayed, persistent orthostatic hypotension. Clin Toxicol. 2010;48(2):146.

    Article  CAS  Google Scholar 

  99. Shichao L, Jingjing Y, Jihong K. Research progress on the pathogenesis and risk assessment of orthostatic hypotension. Chin J Geriatr Cardiocerebrovasc Dis. 2018;2:208–10.

    Google Scholar 

  100. Neal AJ, Qian MY, Clinch AS, et al. Orthostatic hypotension secondary to CRMP-5 paraneoplastic autonomic neuropathy. J Clin Neurosci. 2014;21(5):885–6.

    Article  CAS  PubMed  Google Scholar 

  101. Aso Y, Wakabayashi S, Terasawa T, et al. Elevation of serum high molecular weight adiponectin in patients with Type 2 diabetes and orthostatic hypotension: association with arterial stiffness and hypercoagulability. Diabet Med. 2012;29(1):80–7.

    Article  CAS  PubMed  Google Scholar 

  102. Eigenbrodt ML, Rose KM, Couper DJ, et al. Orthostatic hypotension as a risk factor for stroke: The Atherosclerosis Risk in Communities (ARIC) Study, 1987-1996. Stroke. 2000;31(10):2307–13.

    Article  CAS  PubMed  Google Scholar 

  103. Wen S, Sanshuai C, Kaiyu S, et al. Relationship between postural hypotension and persistent atrial fibrillation. J Cardiopulmonary Vasc Dis. 2018;121:596–601.

    Google Scholar 

  104. Meng Q, Wang S, Wang Y, et al. Arterial stiffness is a potential mechanism and promising indicator of orthostatic hypotension in the general population. Vasa Zeitschrift Für Gefässkrankheiten. 2014;43(6):423.

    Article  PubMed  Google Scholar 

  105. Sung SH, Chen ZY, Tseng TW, et al. Wave reflections, arterial stiffness, and orthostatic hypotension. Am J Hypertens. 2014;27(12):1446–55.

    Article  CAS  PubMed  Google Scholar 

  106. Li H, Kem DC, Reim S, et al. Agonistic autoantibodies as vasodilators in orthostatic hypotension: a new mechanism. Hypertension. 2012;59(2):402–8.

    Article  CAS  PubMed  Google Scholar 

  107. Krishnan B, Benditt DG. Neuropeptides and peptide hormones in syncope and orthostatic intolerance. Cardiol J. 2014;21(6):591–600.

    Article  PubMed  Google Scholar 

  108. Fan XH, Wang H, Wu HY, et al. Association between endothelin-1 gene 5′ non-translation region polymorphism and postural hypotension. Chin J Mol Cardiol. 2010;10(5):277–80.

    Google Scholar 

  109. Krishnan B, Patarroyoaponte M, Duprez D, et al. Orthostatic hypotension of unknown cause: unanticipated association with elevated circulating N-terminal brain natriuretic peptide (NT-proBNP). Heart Rhythm. 2015;12(6):1287–94.

    Article  PubMed  Google Scholar 

  110. Annweiler C, Schott AM, Rolland Y, et al. Vitamin D deficiency is associated with orthostatic hypotension in oldest-old women. J Intern Med. 2015;276(3):285–95.

    Article  CAS  Google Scholar 

  111. Schwartz F, Baldwin CT, Baima J, et al. Mitochondrial DNA mutations in patients with orthostatic hypotension. Am J Med Genet. 1999;86(2):145–50.

    Article  CAS  PubMed  Google Scholar 

  112. Tabara Y, Kohara K, Miki T. Polymorphisms of genes encoding components of the sympathetic nervous system but not the renin–angiotensin system as risk factors for orthostatic hypotension. J Hypertens. 2002;20(4):651–6.

    Article  CAS  PubMed  Google Scholar 

  113. Gao Y, Yahui Lin MS, Sun K, et al. Orthostatic blood pressure dysregulation and polymorphisms of β-adrenergic receptor genes in hypertensive patients. J Clin Hypertens. 2014;16(3):7.

    Article  CAS  Google Scholar 

  114. Skelly AN, Sato Y, Kearney S, et al. Mining the microbiota for microbial and metabolite-based immunotherapies. Nat Rev Immunol. 2019;19(5):305–23.

    Article  CAS  PubMed  Google Scholar 

  115. Santisteban MM, Qi Y, Zubcevic J, et al. Hypertension-linked pathophysiological alterations in the gut. Circ Res. 2016;120(2):312–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Richards EM, Pepine CJ, Raizada MK, et al. The gut, its microbiome, and hypertension. Curr Hypertens Rep. 2017;19(4):36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Roblesvera I, Toral M, Romero M, et al. Antihypertensive effects of probiotics. Curr Hypertens Rep. 2017;19(4):26.

    Article  CAS  Google Scholar 

  118. Li J, Zhao F, Wang Y, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kim S, Goel R, Kumar A, et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci. 2018;132(6):701–18.

    Article  CAS  Google Scholar 

  120. Marques FZ, Mackay CR, Kaye DM. Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat Rev Cardiol. 2018;15(1):20–32.

    Article  PubMed  Google Scholar 

  121. Pluznick JL. Microbial short-chain fatty acids and blood pressure regulation. Curr Hypertens Rep. 2017;19(4):25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Taylor WR, Takemiya K. Hypertension opens the flood gates to the gut microbiota. Circ Res. 2017;120(2):249–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Miyamoto J, Kasubuchi M, Nakajima A, et al. The role of short-chain fatty acid on blood pressure regulation. Curr Opin Nephrol Hypertens. 2016;25(5):379–83.

    Article  CAS  PubMed  Google Scholar 

  124. Wenzel U, Turner JE, Krebs C, et al. Immune mechanisms in arterial hypertension. J Am Soc Nephrol. 2016;27(3):677–86.

    Article  CAS  PubMed  Google Scholar 

  125. Schiffrin EL. T lymphocytes: a role in hypertension? Curr Opin Nephrol Hypertens. 2010;19(2):181–6.

    Article  CAS  PubMed  Google Scholar 

  126. Park Y, Subar AF, Hollenbeck A, et al. Dietary fiber intake and mortality in the NIH-AARP Diet and Health Study. Arch Intern Med. 2011;171(12):1061–8.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Threapleton DE, Greenwood DC, Evans CEL, et al. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2013;347:f6879.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ganesh BP, Nelson JW, Eskew JR, et al. Prebiotics, probiotics, and acetate supplementation prevent hypertension in a model of obstructive sleep apnea. Hypertension. 2018;72(5):1141–50.

    Article  CAS  PubMed  Google Scholar 

  129. Khalesi S, Sun J, Buys N, et al. Effect of probiotics on blood pressure : a systematic review and meta-analysis of randomized, controlled trials. Hypertension. 2014;64:897–903.

    Article  CAS  PubMed  Google Scholar 

  130. Dong JY, Szeto IM, Makinen K, et al. Effect of probiotic fermented milk on blood pressure: a meta-analysis of randomised controlled trials. Br J Nutr. 2013;110(07):1188–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, R. et al. (2020). Secondary Hypertension of Other Type. In: Li, N. (eds) Secondary Hypertension. Springer, Singapore. https://doi.org/10.1007/978-981-15-0591-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0591-1_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0590-4

  • Online ISBN: 978-981-15-0591-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics