Skip to main content

Monogenic Hypertension

  • Chapter
  • First Online:
Secondary Hypertension

Abstract

Monogenic hypertension [1], also known as Mendelian hypertension, is a group of infrequent hypertension diseases caused by a single gene mutation, and the genetic pattern conforms to Mendel’s law of inheritance. It is often juvenile onset, mostly manifested as moderate, severe hypertension, and its complications occur early. Conventional antihypertensive therapy is often ineffective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nanfang L. Secondary hypertension. 1st ed. Beijing: People’s Medical Publishing House; 2014.

    Google Scholar 

  2. Funder JW, Carey RM, Mantero F, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101:1889–916.

    Article  CAS  PubMed  Google Scholar 

  3. Lenzini L, Prisco S, Caroccia B. Saga of familial hyperaldosteronism: yet a new channel. Hypertension. 2018;71:1010–4.

    Article  CAS  PubMed  Google Scholar 

  4. Aglony M, Martínez-Aguayo A, Carvajal CA, et al. Frequency of familial hyperaldosteronism type 1 in a hypertensive pediatric population: clinical and biochemical presentation. Hypertension. 2011;57:1117–21.

    Article  CAS  PubMed  Google Scholar 

  5. Monticone S, Buffolo F, Tetti M, et al. GENETICS IN ENDOCRINOLOGY: the expanding genetic horizon of primary aldosteronism. Eur J Endocrinol. 2018;178:R101–11.

    Article  CAS  PubMed  Google Scholar 

  6. Carvajal CA, Stehr CB, González PA, et al. A de novo unequal cross-over mutation between CYP11B1 and CYP11B2 genes causes familial hyperaldosteronism type I. J Endocrinol Invest. 2011;34:140–4.

    Article  CAS  PubMed  Google Scholar 

  7. So A, Duffy DL, Gordon RD, et al. Familial hyperaldosteronism type II is linked to the chromosome 7p22 region but also shows predicted heterogeneity. J Hypertens. 2005;23(8):1477–84.

    Article  CAS  PubMed  Google Scholar 

  8. Aimei D, Zhenfang Y, Yanming G, Xiaohui G. A Chinese familial hyperaldosteronism type II family linkage analysis of clinical phenotype and 7p22. Chin J Hypertens. 2009;17(1):62–6.

    Google Scholar 

  9. Scholl UI, Stölting G, Schewe J, et al. CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nat Genet. 2018;50:349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fernandes-Rosa FL, Daniil G, Orozco IJ, et al. A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism. Nat Genet. 2018;50:355–61.

    Article  CAS  PubMed  Google Scholar 

  11. Mulatero P, Tauber P, Zennaro MC, et al. KCNJ5 mutations in European families with nonglucocorticoid remediable familial hyperaldosteronism. Hypertension. 2012;59:235–40.

    Article  CAS  PubMed  Google Scholar 

  12. Geller DS, Zhang J, Wisgerhof MV, et al. A novel form of human Mendelian hypertension featuring nonglucocorticoid-remediable aldosteronism. J Clin Endocrinol Metab. 2008;93(8):3117–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Choi M, Scholl UI, Yue P, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science. 2011;331:768–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oki K, Plonczynski MW, Luis Lam M, et al. Potassium channel mutant KCNJ5 T158A expression in HAC-15 cells increases aldosterone synthesis. Endocrinology. 2012;153:1774–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Williams TA, Monticone S, Schack VR, et al. Somatic ATP1A1, ATP2B3, and KCNJ5 mutations in aldosterone-producing adenomas. Hypertension. 2014;63:188–95.

    Article  CAS  PubMed  Google Scholar 

  16. Lenzini L, Rossitto G, Maiolino G, et al. A meta-analysis of somatic KCNJ5 K(+) channel mutations in 1636 patients with an aldosterone-producing adenoma. J Clin Endocrinol Metab. 2015;100:E1089–95.

    Article  PubMed  CAS  Google Scholar 

  17. Tong A, Liu G, Wang F, et al. A novel phenotype of familial hyperaldosteronism type III: concurrence of aldosteronism and Cushing’s syndrome. J Clin Endocrinol Metab. 2016;101:4290–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Scholl UI, Stölting G, Nelson-Williams C, et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. elife. 2015;4:e06315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. White PC. Steroid 11β-hydroxylase deficiency and related disorders. In: New MI, et al., editors. Genetic steroid disorders. San Diego: Academic; 2014. p. 71–85.

    Chapter  Google Scholar 

  20. Rösler A, Leiberman E, Cohen T. High frequency of congenital adrenal hyperplasia (classic 11 beta-hydroxylase deficiency) among Jews from Morocco. Am J Med Genet. 1992;42:827.

    Article  PubMed  Google Scholar 

  21. Paperna T, Gershoni-Baruch R, Badarneh K, Kasinetz L, Hochberg Z. Mutations in CYP11B1 and congenital adrenal hyperplasia in Moroccan Jews. J Clin Endocrinol Metab. 2005;90(9):5463–5.

    Article  CAS  PubMed  Google Scholar 

  22. Kuribayashi I, Massa G, van den Tooren-de Groot HK, et al. A novel nonsense mutation in the Cyp11B1 gene from a subject with the steroid 11beta-hydroxylase form of congenital adrenal hyperplasia. Endocr Res. 2003;29:377.

    Article  CAS  PubMed  Google Scholar 

  23. Nimkarn S, New MI. Steroid 11beta-hydroxylase deficiency congenital adrenal hyperplasia. Trends Endocrinol Metab. 2008;19(3):96–9.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang M, Liu Y, Sun S, Zhang H, Wang W, Ning G, et al. A prevalent and three novel mutations in CYP11B1 gene identified in Chinese patients with 11-beta hydroxylase deficiency. J Steroid Biochem Mol Biol. 2013;133:25–9.

    Article  CAS  PubMed  Google Scholar 

  25. Dumic K, Yuen T, Grubic Z, Kusec V, Barisic I, New MI. Two novel CYP11B1 gene mutations in patients from two Croatian families with 11 beta-hydroxylase deficiency. Int J Endocrinol. 2014;2014:185974.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wang X, Nie M, Lu L, Tong A, Chen S, Lu Z. Identification of seven novel CYP11B1 gene mutations in Chinese patients with 11beta-hydroxylase deficiency. Steroids. 2015;100:11–6.

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen HH, Eiden-Plach A, Hannemann F, Malunowicz EM, Hartmann MF, Wudy SA, et al. Phenotypic, metabolic, and molecular genetic characterization of six patients with congenital adrenal hyperplasia caused by novel mutations in the CYP11B1 gene. J Steroid Biochem Mol Biol. 2016;155(Pt A):126–34.

    Article  CAS  PubMed  Google Scholar 

  28. Yurekli BS, Kutbay NO, Onay H, Simsir IY, Kocabas GU, Erdogan M, et al. A novel CYP11B1 mutation in a Turkish patient with 11beta-hydroxylase deficiency: an association with the severe hypokalemia leading to rhabdomyolysis. Hormones (Athens, Greece). 2016;15(2):300–2.

    Google Scholar 

  29. Peter M. Congenital adrenal hyperplasia: 11beta-hydroxylase deficiency. Semin Reprod Med. 2002;20(3):249–54.

    Article  CAS  PubMed  Google Scholar 

  30. German A, Suraiya S, Tenenbaum-Rakover Y, Koren I, Pillar G, Hochberg Z. Control of childhood congenital adrenal hyperplasia and sleep activity and quality with morning or evening glucocorticoid therapy. J Clin Endocrinol Metab. 2008;93(12):4707–10.

    Article  CAS  PubMed  Google Scholar 

  31. Reisch N, Högler W, Parajes S, et al. A diagnosis not to be missed: nonclassic steroid 11β-hydroxylase deficiency presenting with premature adrenarche and hirsutism. J Clin Endocrinol Metab. 2013;98:E1620.

    Article  CAS  PubMed  Google Scholar 

  32. Lashansky G, Saenger P, Dimartino-Nardi J, et al. Normative data for the steroidogenic response of mineralocorticoids and their precursors to adrenocorticotropin in a healthy pediatric population. J Clin Endocrinol Metab. 1992;75:1491.

    CAS  PubMed  Google Scholar 

  33. Lashansky G, Saenger P, Fishman K, et al. Normative data for adrenal steroidogenesis in a healthy pediatric population: age- and sex-related changes after adrenocorticotropin stimulation. J Clin Endocrinol Metab. 1991;73:674.

    Article  CAS  PubMed  Google Scholar 

  34. Barr M, MacKenzie SM, Wilkinson DM, Holloway CD, Friel EC, Miller S, et al. Functional effects of genetic variants in the 11beta-hydroxylase (CYP11B1) gene. Clin Endocrinol. 2006;65(6):816–25.

    Article  CAS  Google Scholar 

  35. Reisch N, Hogler W, Parajes S, Rose IT, Dhir V, Gotzinger J, et al. A diagnosis not to be missed: nonclassic steroid 11beta-hydroxylase deficiency presenting with premature adrenarche and hirsutism. J Clin Endocrinol Metab. 2013;98(10):E1620–5.

    Article  CAS  PubMed  Google Scholar 

  36. Kater CE, Biglieri EG. Disorders of steroid 17 alpha-hydroxylase deficiency. Endocrinol Metab Clin N Am. 1994;23:341.

    Article  CAS  Google Scholar 

  37. Costa-Santos M, Kater CE, Auchus RJ, Brazilian Congenital Adrenal Hyperplasia Multicenter Study Group. Two prevalent CYP17 mutations and genotype-phenotype correlations in 24 Brazilian patients with 17-hydroxylase deficiency. J Clin Endocrinol Metab. 2004;89:49.

    Article  CAS  PubMed  Google Scholar 

  38. Geller DH, Auchus RJ, Mendonça BB, Miller WL. The genetic and functional basis of isolated 17,20-lyase deficiency. Nat Genet. 1997;17:201.

    Article  CAS  PubMed  Google Scholar 

  39. Sherbet DP, Tiosano D, Kwist KM, et al. CYP17 mutation E305G causes isolated 17,20-lyase deficiency by selectively altering substrate binding. J Biol Chem. 2003;278:48563.

    Article  CAS  PubMed  Google Scholar 

  40. Auchus RJ. Steroid 17-hydroxylase and 17,20-lyase deficiencies, genetic and pharmacologic. J Steroid Biochem Mol Biol. 2017;165:71–8.

    Article  CAS  PubMed  Google Scholar 

  41. Yanase T, Simpson ER, Waterman MR. 17 alpha-hydroxylase/17,20-lyase deficiency: from clinical investigation to molecular definition. Endocr Rev. 1991;12:91.

    Article  CAS  PubMed  Google Scholar 

  42. Auchus RJ. The genetics, pathophysiology, and management of human deficiencies of P450c17. Endocrinol Metab Clin N Am. 2001;30:101–19.

    Article  CAS  Google Scholar 

  43. Tiosano D, Knopf C, Koren I, et al. Metabolic evidence for impaired 17alpha-hydroxylase activity in a kindred bearing the E305G mutation for isolate 17,20-lyase activity. Eur J Endocrinol. 2008;158:385.

    Article  CAS  PubMed  Google Scholar 

  44. Martin RM, Lin CJ, Costa EM, et al. P450c17 deficiency in Brazilian patients: biochemical diagnosis through progesterone levels confirmed by CYP17 genotyping. J Clin Endocrinol Metab. 2003;88:5739.

    Article  CAS  PubMed  Google Scholar 

  45. Flück CE, Tajima T, Pandey AV, et al. Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley-Bixler syndrome. Nat Genet. 2004;36:228.

    Article  PubMed  CAS  Google Scholar 

  46. Costa-Santos M, Kater CE, Auchus RJ. Two prevalent CYP17 mutations and genotype-phenotype correlations in 24 Brazilian patients with 17-hydroxylase deficiency. J Clin Endocrinol Metab. 2004;89:49–60.

    Article  CAS  PubMed  Google Scholar 

  47. Hershkovitz E, Parvari R, Wudy SA, et al. Homozygous mutation G539R in the gene for P450 oxidoreductase in a family previously diagnosed as having 17,20-lyase deficiency. J Clin Endocrinol Metab. 2008;93:3584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morineau G, et al. Apparent mineralocorticoid excess: report of six new cases and extensive personal experience. J Am Soc Nephrol. 2006;17:3176–84.OpenUrl.

    Article  CAS  PubMed  Google Scholar 

  49. New MI, Levine LS, Biglieri EG, et al. Evidence for an unidentified steroid in a child with apparent mineralocorticoid hypertension. J Clin Endocrinol Metab. 1977;44(5):924–33.

    Article  CAS  PubMed  Google Scholar 

  50. Lavery GG, Ronconi V, Draper N, et al. Late-onset apparent mineralocorticoid excess caused by novel compound heterozygous mutations in the HSD11B2 gene. Hypertension. 2003;42(2):123–9.

    Article  CAS  PubMed  Google Scholar 

  51. Funder JW. 11 beta-hydroxysteroid dehydrogenase: new answers, new questions. Eur J Endocrinol. 1996;134(3):267.

    Article  CAS  PubMed  Google Scholar 

  52. Wilson RC, Dave-Sharma S, Wei JQ, et al. A genetic defect resulting in mild low-renin hypertension. Proc Natl Acad Sci. 1998;95(17):10200–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Antonelli G, Artusi C, Marinova M, et al. Cortisol and cortisone ratio in urine: LC-MS/MS method validation and preliminary clinical application. Clin Chem Lab Med. 2014;52(2):213–20.

    Article  CAS  PubMed  Google Scholar 

  54. Palermo M, Delitala G, Mantero F, Stewart PM, Shackleton CHL. Congenital deficiency of 11β-hydroxysteroid dehydrogenase (apparent mineralocorticoid excess syndrome): diagnostic value of urinary free cortisol and cortisone. J Endocrinol Investig. 2001;24(1):17–23.

    Article  CAS  Google Scholar 

  55. Palermo M, CHL S, Mantero F, et al. Urinary free cortisone and the assessment of 11β-hydroxysteroid dehydrogenase activity in man. Clin Endocrinol. 1996;45(5):605–11.

    Article  CAS  Google Scholar 

  56. Quinkler M, Stewart PM. Hypertension and the cortisol-cortisone shuttle. J Clin Endocrinol Metabol. 2003;88(6):2384–92.

    Article  CAS  Google Scholar 

  57. Palermo M, Cossu M, Shackleton CHL. Cure of apparent mineralocorticoid excess by kidney transplantation. N Engl J Med. 1998;339(24):1787–8.

    Article  CAS  PubMed  Google Scholar 

  58. Khattab AM, Shackleton CHL, Hughes BA, et al. Remission of hypertension and electrolyte abnormalities following renal transplantation in a patient with apparent mineralocorticoid excess well documented throughout childhood. J Pediatr Endocrinol Metab. 2014;27(1–2):17–21.

    CAS  PubMed  Google Scholar 

  59. Rosmond R, Chagnon YC, Chagnon M, et al. A polymorphism of the 5′-flanking region of the glucocorticoid receptor gene locus is associated with basal cortisol secretion in men. Metab Clin Exp. 2000;49(9):1197–9.

    Article  CAS  PubMed  Google Scholar 

  60. Nicolaides NC, Galata Z, Kino T, et al. The human glucocorticoid receptor: molecular basis of biologic function. Steroids. 2010;75(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou J, Cidlowski JA. The human glucocorticoid receptor: one gene, multiple proteins and diverse responses. Steroids. 2005;70(5–7):407–17.

    Article  CAS  PubMed  Google Scholar 

  62. Moraitis AG, Block T, Nguyen D, et al. The role of glucocorticoid receptors in metabolic syndrome and psychiatric illness. J Steroid Biochem Mol Biol. 2017;165(Pt A):114–20.

    Article  CAS  PubMed  Google Scholar 

  63. Chrousos GP. The glucocorticoid receptor gene, longevity, and the complex disorders of Western societies. Am J Med. 2004;117:204–7.

    Article  CAS  PubMed  Google Scholar 

  64. Pagani L, Diekmann Y, Sazzini M, et al. Three reportedly unrelated families with Liddle syndrome inherited from a common ancestor. Hypertension. 2018;71(2):273–9. https://doi.org/10.1161/HYPERTENSIONAHA.117.10491.

    Article  CAS  PubMed  Google Scholar 

  65. Wang L-P, Yang K-Q, Jiang X-J, et al. Prevalence of Liddle syndrome among young hypertension patients of undetermined cause in a Chinese population. J Clin Hypertens. 2015;17(11):6.

    Article  CAS  Google Scholar 

  66. Liu K, Qin F, Sun X, et al. Analysis of the genes involved in Mendelian forms of low-renin hypertension in Chinese early-onset hypertensive patients. J Hypertens. 2018;36(3):502–9.

    Article  CAS  PubMed  Google Scholar 

  67. Canessa CM, Horisberger JD, Rossier BC. Epithelial sodium channel related to proteins involved in neurodegeneration. Nature (London). 1993;361(6411):467–70.

    Article  CAS  Google Scholar 

  68. Canessa CM, Schild L, Buell G, et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature (London). 1994;367(6462):463–7.

    Article  CAS  Google Scholar 

  69. Canessa CM, Merillat AM, Rossier BC. Membrane topology of the epithelial sodium channel in intact cells. Am J Phys. 1994;267(1):1682–90.

    Article  Google Scholar 

  70. Salih M, Gautschi I, van Bemmelen MX, di Benedetto M, Brooks AS, Lugtenberg D, Schild L, Hoorn EJ. A missense mutation in the extracellular domain of αENaC causes Liddle syndrome. J Am Soc Nephrol. 2017;28:3291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Martina T, Silvia M, Jacopo B, et al. Liddle syndrome: review of the literature and description of a new case. Int J Mol Sci. 2018;19(3):812.

    Article  CAS  Google Scholar 

  72. Hiltunen TP, Hannilahandelberg T, Petäjäniemi N, et al. Liddle’s syndrome associated with a point mutation in the extracellular domain of the epithelial sodium channel gamma subunit. J Hypertens. 2002;20(12):2383–90.

    Article  CAS  PubMed  Google Scholar 

  73. Nesterov V, Krueger B, Bertog M, et al. In Liddle syndrome, epithelial sodium channel is hyperactive mainly in the early part of the aldosterone-sensitive distal nephron novelty and significance. Hypertension. 2016;67(6):1256–62.

    Article  CAS  PubMed  Google Scholar 

  74. Elizabeth M, Unwin RJ, Walsh SB. Liquorice, Liddle, Bartter or Gitelman—how to differentiate? Nephrol Dial Transplant. 2019;34(1):38–9.

    Article  Google Scholar 

  75. Caretto A, Primerano L, Novara F, et al. A therapeutic challenge: Liddle’s syndrome managed with amiloride during pregnancy. Case Rep Obstet Gynecol. 2014;2014:156250.

    PubMed  PubMed Central  Google Scholar 

  76. Wilson FH, Disse-Nicodème S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP. Human hypertension caused by mutations in WNK kinases. Science. 2001;293(5532):1107–12.

    Article  CAS  PubMed  Google Scholar 

  77. Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, Tikhonova IR, Bjornson R, Mane SM, Colussi G, Lebel M, Gordon RD, Semmekrot BA, Poujol A, Välimäki MJ, De Ferrari ME, Sanjad SA, Gutkin M, Karet FE, Tucci JR, Stockigt JR, Keppler-Noreuil KM, Porter CC, Anand SK, Whiteford ML, Davis ID, Dewar SB, Bettinelli A, Fadrowski JJ, Belsha CW, Hunley TE, Nelson RD, Trachtman H, Cole TR, Pinsk M, Bockenhauer D, Shenoy M, Vaidyanathan P, Foreman JW, Rasoulpour M, Thameem F, Al-Shahrouri HZ, Radhakrishnan J, Gharavi AG, Goilav B, Lifton RP. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature. 2012;482(7383):98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Louis-Dit-Picard H, Barc J, Trujillano D, Miserey-Lenkei S, Bouatia-Naji N, Pylypenko O, Beaurain G, Bonnefond A, Sand O, Simian C, Vidal-Petiot E, Soukaseum C, Mandet C, Broux F, Chabre O, Delahousse M, Esnault V, Fiquet B, Houillier P, Bagnis CI, Koenig J, Konrad M, Landais P, Mourani C, Niaudet P, Probst V, Thauvin C, Unwin RJ, Soroka SD, Ehret G, Ossowski S, Caulfield M, International Consortium for Blood Pressure (ICBP), Bruneval P, Estivill X, Froguel P, Hadchouel J, Schott JJ, Jeunemaitre X. KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet. 2012;44(4):456–60.

    Article  CAS  PubMed  Google Scholar 

  79. Wilson FH, Kahle KT, Sabath E, et al. Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proc Natl Acad Sci. 2003;100(2):680–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Delaloy C, Elviramatelot E, Clemessy M, et al. Deletion of WNK1 first intron results in misregulation of both isoforms in renal and extrarenal tissues. Hypertension. 2008;52(6):1149.

    Article  CAS  PubMed  Google Scholar 

  81. Kahle KT, Macgregor GG, Wilson FH, et al. Paracellular Cl-permeability is regulated by WNK4 kinase: insight into normal physiology and hypertension. Proc Natl Acad Sci. 2004;101(41):14877–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mayan H, Muntera G, Shaharabany M, et al. Hypercalciuria in familial hyperkalemia and hypertension accompanies hyperkalemia and precedes hypertension: description of a large family with the Q565E WNK4 mutation. J Clin Endocrinol Metabol. 2004;89(8):4025–30.

    Article  CAS  Google Scholar 

  83. Hollander R, Mortier G, Van Hoeck K. Hyperkalemia in young children: blood pressure checked? Eur J Pediatr. 2016;175(12):2011–3.

    Article  CAS  PubMed  Google Scholar 

  84. Roman-Gonzalez A, Jimenez C. Malignant pheochromocytoma-paraganglioma: pathogenesis, TNM staging, and current clinical trials. Curr Opin Endocrinol Diabetes Obes. 2017;24(3):174–83.

    Article  PubMed  Google Scholar 

  85. Fakhry N, Niccoli-Sire P, Barlier-Seti A, Giorgi R, Giovanni A, Zanaret M. Cervical paragangliomas: is SDH genetic analysis systematically required. Eur Arch Otorhinolaryngol. 2008;265(5):557–63.

    Article  PubMed  Google Scholar 

  86. Dannenberg H, Dinjens WN, Abbou M, et al. Frequent germ-line succinate dehydrogenase subunit D gene mutations in patients with apparently sporadic parasympathetic paraganglioma. Clin Cancer Res. 2002;8(7):2061–6.

    CAS  PubMed  Google Scholar 

  87. Taschner PE, Jansen JC, Baysal BE, et al. Nearly all hereditary paragangliomas in the Netherlands are caused by two founder mutations in the SDHD gene. Genes Chromosomes Cancer. 2001;31(3):274–81.

    Article  CAS  PubMed  Google Scholar 

  88. Astrom K, Cohen JE, Willett-Brozick JE, Aston CE, Baysal BE. Altitude is a phenotypic modifier in hereditary paraganglioma type 1: evidence for an oxygen-sensing defect. Hum Genet. 2003;113(3):228–37.

    Article  PubMed  Google Scholar 

  89. Cremers CW, De Mönnink JP, Arts N, Joosten FB, Kremer H, Hoefsloot L. Clinical report on the L95P mutation in a Dutch family with paraganglioma. Otol Neurotol. 2002;23(5):755–9.

    Article  CAS  PubMed  Google Scholar 

  90. Jiménez C, Cote G, Arnold A, Gagel RF. Review: should patients with apparently sporadic pheochromocytomas or paragangliomas be screened for hereditary syndromes. J Clin Endocrinol Metab. 2006;91(8):2851–8.

    Article  PubMed  CAS  Google Scholar 

  91. Maierwoelfle M, BräNdle M, Komminoth P, et al. A novel succinate dehydrogenase subunit B gene mutation, H132P, causes familial malignant sympathetic extraadrenal paragangliomas. J Clin Endocrinol Metab. 2004;89(1):362–7.

    Article  CAS  Google Scholar 

  92. Baysal BE. Hereditary paraganglioma targets diverse paraganglia. J Med Genet. 2002;39(9):617–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gimenezroqueplo AP, Timmers HJLM, Pacak K, et al. Mutations associated with succinate dehydrogenase d-related malignant paragangliomas. Clin Endocrinol. 2010;68(4):561–6.

    Google Scholar 

  94. Alrezk R, Suarez A, Tena I, Pacak K. Update of pheochromocytoma syndromes: genetics, biochemical evaluation, and imaging. Front Endocrinol (Lausanne). 2018;9:515.

    Article  PubMed Central  Google Scholar 

  95. Pillai S, Gopalan V, Smith RA, Lam AK. Updates on the genetics and the clinical impacts on phaeochromocytoma and paraganglioma in the new era. Crit Rev Oncol Hematol. 2016;100:190–208.

    Article  PubMed  Google Scholar 

  96. Asher KP, Gupta GN, Boris RS, Pinto PA, Linehan WM, Bratslavsky G. Robot-assisted laparoscopic partial adrenalectomy for pheochromocytoma: the National Cancer Institute technique. Eur Urol. 2011;60(1):118–24.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zhang J, Ma J, Du X, et al. Clinical and genetic investigation of a multi-generational Chinese family afflicted with Von Hippel-Lindau disease. Chin J Med (English version). 2015;128(1):32–8.

    CAS  Google Scholar 

  98. Zbar B, Kishida T, Chen F, et al. Germline mutations in the Von Hippel-Lindau disease (VHL) gene in families from North America, Europe, and Japan. Hum Mutat. 2015;8(4):348–57.

    Article  Google Scholar 

  99. Rednam SP, Erez A, Druker H, et al. Von Hippel-Lindau and hereditary pheochromocytoma/paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res. 2017;23(12):e68.

    Article  CAS  PubMed  Google Scholar 

  100. Bausch B, Jilg C, GlaSker S, et al. Renal cancer in von Hippel–Lindau disease and related syndromes. Nat Rev Nephrol. 2013;9(9):529–38.

    Article  CAS  PubMed  Google Scholar 

  101. Aronoff L, Malkin D, Van KE, et al. Evidence for genetic anticipation in von Hippel-Lindau syndrome. J Med Genet. 2018;55(6):395–402. https://doi.org/10.1136/jmedgenet-2017-104882.

    Article  CAS  PubMed  Google Scholar 

  102. Slootweg, Vroonhoven V, Hené, et al. Management of renal cell carcinoma in von Hippel–Lindau disease. Eur J Clin Investig. 2015;29(1):68–75.

    Google Scholar 

  103. Thakker RV. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol. 2014;386(1–2):2–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zupan A, Glavač D. The development of rapid and accurate screening test for RET hotspot somatic and germline mutations in MEN2 syndromes. Exp Mol Pathol. 2015;99(3):416–25.

    Article  CAS  PubMed  Google Scholar 

  105. Frank-Raue K, Raue F. Hereditary medullary thyroid cancer genotype-phenotype correlation. Recent Results Cancer Res. 2015;204:139–56.

    Article  PubMed  Google Scholar 

  106. Alevizaki M, Saltiki K. Primary hyperparathyroidism in MEN2 syndromes. Recent Results Cancer Res. 2015;204:179–86.

    Article  PubMed  Google Scholar 

  107. Elisei R, Alevizaki M, Conte-Devolx B, Frank-Raue K, Leite V, Williams GR. 2012 European thyroid association guidelines for genetic testing and its clinical consequences in medullary thyroid cancer. Eur Thyroid J. 2013;1(4):216–31.

    Article  CAS  PubMed  Google Scholar 

  108. Wells SA, Asa SL, Dralle H, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Raue F, Frank-Raue K. Epidemiology and clinical presentation of medullary thyroid carcinoma. Recent Results Cancer Res. 2015;204:61–90.

    Article  PubMed  Google Scholar 

  110. Zhao JQ, Chen ZG, Qi XP. Molecular diagnosis and comprehensive treatment of multiple endocrine neoplasia type 2 in Southeastern Chinese. Hered Cancer Clin Pract. 2015;13(1):5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Castinetti F, Qi XP, Walz MK, et al. Outcomes of adrenal-sparing surgery or total adrenalectomy in phaeochromocytoma associated with multiple endocrine neoplasia type 2: an international retrospective population-based study. Lancet Oncol. 2014;15(6):648–55.

    Article  PubMed  Google Scholar 

  112. Longo JF, Weber SM, Turner-Ivey BP, et al. Recent advances in the diagnosis and pathogenesis of neurofibromatosis type 1 (NF1)-associated peripheral nervous system neoplasms. Adv Anat Pathol. 2018;25(5):353–68.

    Article  PubMed  Google Scholar 

  113. Hirbe AC, Kaushal M, Sharma MK, et al. Clinical genomic profiling identifies\r, TYK2\r, mutation and overexpression in patients with neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors. Cancer. 2017;123(7):1194–201.

    Article  CAS  PubMed  Google Scholar 

  114. Pemov A, Li H, Patidar R, et al. The primacy of NF1 loss as the driver of tumorigenesis in neurofibromatosis type 1-associated plexiform neurofibromas. Oncogene. 2017;36(22):3168–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gómez M, Batista O. Molecular diagnosis as a strategy for differential diagnosis and at early ages of neurofibromatosis type 1 (NF1). Rev Med Chil. 2015;143(10):1320.

    Article  PubMed  Google Scholar 

  116. Gieldon L, Masjkur JR, Richter S, et al. Next generation panel sequencing identifies NF1 germline mutations in three patients with pheochromocytoma but no clinical diagnosis of neurofibromatosis type 1. Eur J Endocrinol. 2018;178(2):K1–9. https://doi.org/10.1530/EJE-17-0714.

    Article  CAS  PubMed  Google Scholar 

  117. Bausch B, Schiavi F, Ni Y, et al. Clinical characterization of the pheochromocytoma and paraganglioma susceptibility genes SDHA, TMEM127, MAX, and SDHAF2 for gene-informed prevention. JAMA Oncol. 2017;3(9):1204–12.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Sbardella E, Cranston T, Isidori AM, et al. Routine genetic screening with a multi-gene panel in patients with pheochromocytomas. Endocrine. 2018;59(1):175–82.

    Article  CAS  PubMed  Google Scholar 

  119. Burnichon N, Brière JJ, Libé R, et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet. 2010;19(15):3011–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Neumann HP, Sullivan M, Winter A, et al. Germline mutations of the TMEM127 gene in patients with paraganglioma of head and neck and extraadrenal abdominal sites. J Clin Endocrinol Metab. 2011;96(8):E1279–82.

    Article  CAS  PubMed  Google Scholar 

  121. Oudijk L, Papathomas T, de Krijger R, et al. The mTORC1 complex is significantly overactivated in SDHX-mutated paragangliomas. Neuroendocrinology. 2017;105(4):384–93.

    Article  CAS  PubMed  Google Scholar 

  122. Qin Y, Yao L, King EE, et al. Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Genet. 2010;42(3):229–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Takeichi N, Midorikawa S, Watanabe A, et al. Identical germline mutations in the TMEM127 gene in two unrelated Japanese patients with bilateral pheochromocytoma. Clin Endocrinol. 2012;77(5):707–14.

    Article  CAS  Google Scholar 

  124. Comino-Méndez I, Gracia-Aznárez FJ, Schiavi F, et al. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet. 2011;43(7):663–7.

    Article  PubMed  CAS  Google Scholar 

  125. Burnichon N, Cascón A, Schiavi F, et al. MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin Cancer Res. 2012;18(10):2828–37.

    Article  CAS  PubMed  Google Scholar 

  126. Favier J, Amar L, Gimenez-Roqueplo AP. Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat Rev Endocrinol. 2015;11(2):101–11.

    Article  CAS  PubMed  Google Scholar 

  127. Casey R, Garrahy A, Tuthill A, et al. Universal genetic screening uncovers a novel presentation of an SDHAF2 mutation. J Clin Endocrinol Metab. 2014;99(7):E1392–6.

    Article  CAS  PubMed  Google Scholar 

  128. Maass PG, Aydin A, Luft FC, et al. PDE3A mutations cause autosomal dominant hypertension with brachydactyly. Nat Genet. 2015;47(6):647–53.

    Article  CAS  PubMed  Google Scholar 

  129. Boda H, Uchida H, Takaiso N, et al. A PDE3A mutation in familial hypertension and brachydactyly syndrome. J Hum Genet. 2016;61(8):701–3.

    Article  CAS  PubMed  Google Scholar 

  130. Gong M, Zhang H, Schulz H, Lee YA, Sun K, Bähring S, et al. Genome-wide linkage reveals a locus for human essential (primary) hypertension on chromosome 12p. Hum Mol Genet. 2003;12:1273–7.

    Article  CAS  PubMed  Google Scholar 

  131. Schuster H, et al. A cross-over medication trial for patients with autosomal-dominant hypertension with brachydactyly. Kidney Int. 1998;53:167–72.

    Article  CAS  PubMed  Google Scholar 

  132. Toka O, et al. Childhood hypertension in autosomal-dominant hypertension with brachydactyly. Hypertension. 2010;56:988–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cao, Y. et al. (2020). Monogenic Hypertension. In: Li, N. (eds) Secondary Hypertension. Springer, Singapore. https://doi.org/10.1007/978-981-15-0591-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0591-1_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0590-4

  • Online ISBN: 978-981-15-0591-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics