Skip to main content

Cardiovascular Diseases and Hypertension

  • Chapter
  • First Online:
Secondary Hypertension

Abstract

Secondary hypertension caused by cardiovascular disease are mainly congenital heart disease (arterial patent ductus arteriosus, aortic sinus rupture, main pulmonary artery window), acquired heart disease (aortic regurgitation), vascular disease (aorta constriction, arteriovenous fistula, left renal vein compression syndrome), arrhythmia (complete atrioventricular block), cardiomyopathy, and end-stage heart disease. Its pathogenesis is related to its structural changes during embryonic development. There are specific signs in clinical manifestations. It can be confirmed by echocardiography, enhanced CT, MRI, and cardiac catheterization. Secondary hypertension caused by cardiovascular disease can be treated with conventional antihypertensive drugs according to the level of blood pressure. However, patients generally show poor antihypertensive effects. Considering the prognosis of patients is related to the treatment of their primary diseases, it is recommended that patients be actively treated for primary disease once they are diagnosed, so as not to delay the disease. In this chapter, we will describe the epidemiology, etiology and mechanism, pathophysiology, clinical manifestations, auxiliary examinations, diagnosis and differential diagnosis, treatment and prognosis of secondary hypertension caused by the above cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bower C, Ramsay JM. Congenital heart disease: a 10 year cohort. J Paediatr Child Health. 1994;30(5):414–8.

    Article  CAS  PubMed  Google Scholar 

  2. Wren C. The epidemiology of cardiovascular malformations. In: Moller JH, Hoffman JIE, Benson DW, van Hare GF, Wren C, editors. Pediatric cardiovascular medicine. Oxford: Wiley-Blackwell; 2012. p. 268–75.

    Chapter  Google Scholar 

  3. Ramirez Alcantara J, Mendez MD. StatPearls [Internet]. Aortic, interrupted arch. Treasure Island: StatPearls Publishing; 2018.

    Google Scholar 

  4. Hoffman JI. The challenge in diagnosing coarctation of the aorta. Cardiovasc J Afr. 2018;29(4):252–5.

    Article  PubMed  Google Scholar 

  5. Hoffman JIE, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.

    Article  PubMed  Google Scholar 

  6. Clyman RI. Mechanisms regulating the ductus arteriosus. Biol Neonate. 2006;89:330–5.

    Article  PubMed  Google Scholar 

  7. Dijkema EJ, Leiner T, Grotenhuis HB. Diagnosis, imaging and clinical management of aortic coarctation. Heart. 2017;103(15):1148–55.

    Article  PubMed  Google Scholar 

  8. Law MA, Bhimji SS. Coarctation of the aorta. StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2018. p. 14.

    Google Scholar 

  9. Roeleveld PP, Zwijsen EG. Treatment strategies for paradoxical hypertension following surgical correction of coarctation of the aorta in children. World J Pediatr Congenit Heart Surg. 2017;8(3):321–31.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Luijendijk P, Bouma BJ, Groenink M, et al. Surgical versus percutaneous treatment of aortic coarctation: new standards in an era of transcatheter repair. Expert Rev Cardiovasc Ther. 2012;10(12):1517–31.

    Article  CAS  PubMed  Google Scholar 

  11. Godart F. Management of aortic coarctation at the adult age. Arch Mal Coeur Vaiss. 2007;100(5):478–83.

    CAS  PubMed  Google Scholar 

  12. Torok RD, Campbell MJ, Fleming GA, et al. Coarctation of the aorta: management from infancy to adulthood. World J Cardiol. 2015;7(11):765–75.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lie RT, Wilcox AJ, Skjaerven R. A population-based study of the risk of recurrence of birth defects. N Engl J Med. 1994;331:1–4.

    Article  CAS  PubMed  Google Scholar 

  14. Dolk H, Loane M, Garne E. The prevalence of congenital anomalies in Europe. Adv Exp Med Biol. 2010;686:349–64.

    Article  PubMed  Google Scholar 

  15. Van der Linde D, Konings EE, Slager MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58:2241–7.

    Article  PubMed  Google Scholar 

  16. Hung YC, Yeh JL, Hsu JH. Molecular mechanisms for regulating postnatal ductus arteriosus closure. Int J Mol Sci. 2018;19(7).

    Article  PubMed Central  CAS  Google Scholar 

  17. Anilkumar M. Patent ductus arteriosus. Cardiol Clin. 2013;31(3):417–30.

    Article  PubMed  Google Scholar 

  18. Deshpande P, Baczynski M, McNamara PJ, et al. Patent ductus arteriosus: the physiology of transition. Semin Fetal Neonatal Med. 2018;23(4):225–31.

    Article  PubMed  Google Scholar 

  19. Prescott S, Keim-Malpass J. Patent ductus arteriosus in the preterm infant: diagnostic and treatment options. Adv Neonatal Care. 2017;17(1):10–8.

    Article  PubMed  Google Scholar 

  20. Ferguson JM. Pharmacotherapy for patent ductus arteriosus closure. Congenit Heart Dis. 2019;14(1):52–6.

    PubMed  Google Scholar 

  21. Backes CH, Rivera BK, Bridge JA, et al. Percutaneous patent ductus arteriosus (PDA) closure during infancy: a meta-analysis. Pediatrics. 2017;139(2).

    Article  PubMed  Google Scholar 

  22. Giroud JM, Jacobs JP. Evolution of strategies for management of the patent arterial duct. Cardiol Young. 2007;17(Suppl 2):68–74.

    Article  PubMed  Google Scholar 

  23. Heuchan AM, Clyman RI. Managing the patent ductus arteriosus: current treatment options. Arch Dis Child Fetal Neonatal Ed. 2014;99(5):F431–6.

    Article  PubMed  Google Scholar 

  24. Bhat R, Das UG. Management of patent ductus arteriosus in premature infants. Indian J Pediatr. 2015;82(1):53–60.

    Article  PubMed  Google Scholar 

  25. Elliotson J. Case of malformation of the pulmonary artery and aorta. Lancet. 1830;1:247–51.

    Google Scholar 

  26. Jacobs JP, Quintessenza JA, Gaynor JW, et al. Congenital Heart Surgery Nomenclature and Database Project: aortopulmonary window. Ann Thorac Surg. 2000;69(4 Suppl):S44–9.

    Article  CAS  PubMed  Google Scholar 

  27. Richardson JV, Doty DB, Rossi NP, et al. The spectrum of anomalies of aortopulmonary septation. J Thorac Cardiovasc Surg. 1979;78(1):21–7.

    CAS  PubMed  Google Scholar 

  28. Tiraboschi R, Salomone G, Crupi G, et al. Aortopulmonary window in the first year of life: report on 11 surgical cases. Ann Thorac Surg. 1988;46(4):438–41.

    Article  CAS  PubMed  Google Scholar 

  29. Kutsche LM, Van Mierop LH. Anatomy and pathogenesis of aorticopulmonary septal defect. Am J Cardiol. 1987;59(5):443–7.

    Article  CAS  PubMed  Google Scholar 

  30. Mori K, Ando M, Takao A, et al. Distal type of aortopulmonary window. Report of 4 cases. Br Heart J. 1978;40(6):681–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ho SY, Gerlis LM, Anderson C, et al. The morphology of aortopulmonary window with regard to their classification and morphogenesis. Cardiol Young. 1994;4(2):146–55.

    Article  Google Scholar 

  32. Backer CL, Mavroudis C. Surgical management of aortopulmonary window: a 402 year experience. Eur J Cardio Thorac Surg. 2002;21(5):773–9.

    Article  CAS  Google Scholar 

  33. Melby SJ, Gandhi SK. Current treatment of aortopulmonary window. Curr Treat Options Cardiovasc Med. 2009;11(5):392–5.

    Article  PubMed  Google Scholar 

  34. Konstantinov IE, Karamlou T, Williams WG, et al. Surgical management of aortopulmonary window associated with interrupted aortic arch: a Congenital Heart Surgeons Society study. J Thorac Cardiovasc Surg. 2006;131(5):1136–41.

    Article  PubMed  Google Scholar 

  35. Lung B, Baron G, Butchart EG, Delahaye F, Gohlke-Barwolf C, Levang OW, Tornos P, Vanoverschelde JL, Vermeer F, Boersma E, Ravaud P, Vahanian A. A prospective survey of patients with valvular heart disease in Europe: the Euro Heart Survey on Valvular Heart Disease. Eur Heart J. 2003;24:1231–43.

    Article  Google Scholar 

  36. Zhang W. Current status and prospects of aortic valvuloplasty in the treatment of aortic valve diseases. J Cardiovasc Surg. 2014;3(3):115–8.

    Google Scholar 

  37. Jiang XJ, Chen YK, Wu HY, et al. Effects of arteritis on heart valves. Chin J Circ Med. 1999;14:301–2.

    Google Scholar 

  38. Johnston SL, Lock RJ, Gompels MM. Takayasu arteritis: a review. J Clin Pathol. 2002;55:481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang L, Zhang H, Jiang X, et al. Clinical manifestations and long-term outcome for patients with Takayasu arteritis in China. J Rheumatol. 2014;41:2439–46.

    Article  PubMed  Google Scholar 

  40. Matsuura K, Ogino H, Kobayashi J, et al. Surgical treatment of aortic regurgitation due to Takayasu arteritis: long term morbidity and mortality. Circulation. 2005;112:3707–12.

    Article  PubMed  Google Scholar 

  41. Baumgartner H. The 2017 ESC/EACTS guidelines on the management of valvular heart disease: what is new and what has changed compared to the 2012 guidelines? Wien Klin Wochenschr. 2018;130(5–6):168–71.

    Article  PubMed  Google Scholar 

  42. Sun YX, Ding WJ, Hong T, et al. Outcome and predictors of functional mitral regurgitation in patients with severe aortic valve insufficiency with left ventricular enlargement and dysfunction. Chin J Thorac Cardiovasc Surg. 2013;29(6):368–70.

    CAS  Google Scholar 

  43. Zhang Z, Li M, Zhang L, et al. Multimodality imaging in diagnosis of isolated severe right ventricular hypertrophy: a case report[C]//The 14th national conference on echocardiography. Chin Soc Ultrason Med Eng.

    Google Scholar 

  44. Nishimura RA, Otto CM, Bonow RO, et al. AHA/ACC guideline for the management of patients with valvular heart disease—data supplement. J Thorac Cardiovasc Surg. 2014;148(1):e1–e132.

    Article  PubMed  Google Scholar 

  45. Liu X, Rodriguez CJ, Wang K. Prevalence and trende of isolated hypertension among untreated adults in the United States. J Am Soc Hypertens. 2015;9(3):197–205.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Franklin SS, Jacobs MJ, Wong ND, et al. Predominance of isolated systolic hypertension among middle-aged and elderly US hypertensives: analysis based on National Health and Nutrition Examination Survey (NHANES) III. Hypertension. 2001;37(3):869–74.

    Article  CAS  PubMed  Google Scholar 

  47. Kim NR, Kim HC. Prevalence and trends of isolated systolic hypertension among Korean adults: the Korea National Health and Nutrition Examination Survey, 1998-2012. Korean Circ J. 2015;45(6):492–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ekundayo OJ, Allman RM, Sanders PW, et al. Isolated systolic hypertension and incident heart failure in older adults: a propensity matched study. Hypertension. 2009;53(3):458–65.

    Article  CAS  PubMed  Google Scholar 

  49. Li Y, Wei FF, Thijs L, et al. Ambulatory hypertension subtypes and 24-hour systolic and diastolic blood pressure as distinct outcome predictors in 8341 untreated people recruited from 12 populations. Circulation. 2014;130(6):466–74.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ettehad D, Emdin CA, Kiran A, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387(10022):957–67.

    Article  PubMed  Google Scholar 

  51. Yano Y, Stamler I, Garside DB, et al. Isolated systolic hypertension in young and middle-aged adults and 31-year risk for cardiovascular mortality: the Chicago Heart Association Detection Project in Industry Study. J Am Coll Cardiol. 2015;65(4):327–35.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yano Y, Neeland IJ, Ayers C, et al. Hemodynamic and mechanical properties of the proximal aorta in young and middle-aged adults with isolated systolic hypertension: the Dallas Heart Study. Hypertension. 2017;70(1):158–65.

    Article  CAS  PubMed  Google Scholar 

  53. China’s hypertension prevention and treatment guidelines (revised in 2018). Prev Treat Cardiovasc Cerebrovasc Dis. 2019,19(1):1–44.

    Google Scholar 

  54. The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104.

    Google Scholar 

  55. Townsend RR, Mahfoud F, Kandzari DE, et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. 2017;390(10108):2160–70.

    Article  PubMed  Google Scholar 

  56. Kandzari DE, Bohm M, Mahfoud F, et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet. 2018;391(10137):2346–55.

    Article  PubMed  Google Scholar 

  57. Bavishi C, Goel S, Messerli FH. Isolated systolic hypertension: an update after SPRINT. Am J Med. 2016;129(12):1251–8.

    Article  PubMed  Google Scholar 

  58. Ewen S, Ukena C, Linz D, et al. Reduced effect of percutaneous renal denervation on blood pressure in patients with isolated systolic hypertension. Hypertension. 2015;65(1):193–9.

    Article  CAS  PubMed  Google Scholar 

  59. Mahfoud F, Bakris G, Bhatt DL, et al. Reduced blood pressure-lowering effect of catheter-based renal denervation in patients with isolated systolic hypertension: data from SYMPLICITY HTN-3 and the Global SYMPLICITY Registry. Eur Heart J. 2017;38(2):93–100.

    CAS  PubMed  Google Scholar 

  60. Fengler K, Rommel KP, Hoellriegel R, et al. Pulse wave velocity predicts response to renal denervation in isolated systolic hypertension. J Am Heart Assoc. 2017;6(5):e005879.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lobo MD, Sobotka PA, Stanton A, et al. Central arteriovenous anastomosis for the treatment of patients with uncontrolled hypertension (the ROX CONTROL HTN study): a randomised controlled trial. Lancet. 2015;385(9978):1634–41.

    Article  PubMed  Google Scholar 

  62. Ott C, Lobo MD, Sobotka PA, et al. Effect of arteriovenous anastomosis on blood pressure reduction in patients with isolated systolic hypertension compared with combined hypertension. J Am Heart Assoc. 2016;5(12):e004234.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tsimploulis A, Sheriff HM, Lam PH, et al. Systolic–diastolic hypertension versus isolated systolic hypertension and incident heart failure in older adults: insights from the Cardiovascular Health Study. Int J Cardiol. 2017;235:11–6.

    Article  PubMed  PubMed Central  Google Scholar 

  64. O’Rourke MF, Adji A. Guidelines on guidelines: focus on isolated systolic hypertension in youth. J Hypertens. 2013;31(4):649–54.

    Article  PubMed  CAS  Google Scholar 

  65. Weinreich M, Yu PJ, Trost B. Sinus of valsalva aneurysms: review of the literature and an update on management. Clin Cardiol. 2015;38(3):185–9.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bass D, Bhimji SS. Aneurysm, sinus of valsalva. StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2018.

    Google Scholar 

  67. Feldman DN, Roman MJ. Aneurysms of the sinuses of valsalva. Cardiology. 2006;106(2):73–81.

    Article  PubMed  Google Scholar 

  68. Chakfe N, Kretz JG, Nicolini P, et al. Triple aneurysm of the valsalva sinus complicated by right coronary occlusion: apropos of a case and review of the literature. Ann Chir. 1994;48(9):825–31.

    CAS  PubMed  Google Scholar 

  69. Bricker AO, Avutu B, Mohammed TL, et al. Valsalva sinus aneurysms: findings at CT and MR imaging. Radiographics. 2010;30:99–110.

    Article  PubMed  Google Scholar 

  70. Nakamura Y, Aoki M, Hagino I, et al. Case of congenital aneurysm of sinus of valsalva with common arterial trunk. Ann Thorac Surg. 2014;97:710–2.

    Article  PubMed  Google Scholar 

  71. Goldberg N, Krasnow N. Sinus of valsalva aneurysms. Clin Cardiol. 1990;13(12):831–6.

    Article  CAS  PubMed  Google Scholar 

  72. Grellner W, Karsch KR, Bültmann B. Fatal outcome of a congenital aneurysm of the right sinus valsalvae ruptured into the right atrium. Z Kardiol. 1995;84(7):553–9.

    CAS  PubMed  Google Scholar 

  73. Kalisz K, Rajiah P. Radiological features of uncommon aneurysms of the cardiovascular system. World J Radiol. 2016;8(5):434–48.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ott DA. Aneurysm of the sinus of valsalva. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2006:165–76.

    Google Scholar 

  75. Hiratzka LF, Bakris GL, Beckman JA, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease. A report of The American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. J Am Coll Cardiol. 2010;55:e27–e129.

    Article  PubMed  Google Scholar 

  76. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definition and classification of the cardiomyopathies: An American Heart Association statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translation Biology Interdisciplinary Working groups; and Council on Epidemiology and Prevention. Circulation. 2006;113(14):1807–16.

    Article  PubMed  Google Scholar 

  77. Abelmann WH. Classification and natural history of primary myocardial disease. Prog Cardiovasc Dis. 1984;27(2):73–94.

    Article  CAS  PubMed  Google Scholar 

  78. Teare D. Asymmetrical hypertrophy of the heart in young adults. Br Heart J. 1958;20(1):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Elliott PM, Anastasakis A, Borger MA, et al. ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(39):2733–79.

    Article  PubMed  Google Scholar 

  80. Sen-Chowdhry S, Lowe MD, Sporton SC, et al. Arrhymogenic right ventricular cardiomyopathy: clinical presentation, diagnosis, and management. Am J Med. 2004;117(9):685–95.

    Article  PubMed  Google Scholar 

  81. Nava A, Bance B, Basso C, et al. Clinical profile and long-term follow-up of 37 families with arrythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2000;36(7):2226–33.

    Article  CAS  PubMed  Google Scholar 

  82. Rossi A, Dini FL, Faggiano P, et al. Independent prognostic value of functional mitral regurgitation in patients with heart failure. A quantitative analysis of 1256 patients with ischaemic and nonischaemic dilated cardiomyopathy. Heart. 2011;97(20):1675–80.

    Article  PubMed  Google Scholar 

  83. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713.

    Article  PubMed  Google Scholar 

  84. Faber L, Seggewiss H, Welge D, et al. Echo-guided percutaneous septal ablation for symptomatic hypertrophic obstructive cardiomyopathy: 7 years of experience. Eur J Echocardiogr. 2004;5(5):347–55.

    Article  PubMed  Google Scholar 

  85. Blomstrom-Lundqvist C, Beckman-Suurkula M, Wallentin I, et al. Ventricular dimensions and wall motion assessed by echocardiography in patients with arrhythmogenic right ventricular dyslasia. Eur Heart J. 1988;9(12):1291–302.

    Article  CAS  PubMed  Google Scholar 

  86. Memon S, Ganga HV, Kluger J. Late gadolinium enhancement in patients with nonischemic dilated cardio-myopathy. Pacing Clin Electrophyiol. 2016;39(7):731–47.

    Article  Google Scholar 

  87. Sibley CT, Noureldin RA, Gai N, et al. T1 mapping in cardiomyopathy at cardiac MR: comparison with endomyocardial biopsy[J]. Radiology. 2012;265(3):724–32.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chen X, Zhao S, Zhao T, et al. T-wave inversions related to left ventricular basal hypertrophy and myocardial fibrosis in non-apical hypertrophic cardiomyopathy: a cardiovascular magnetic resonance imaging study. Eur J Radiol. 2014;83(2):297–302.

    Article  PubMed  Google Scholar 

  89. Vogelsberg H, Mahrholdt H, Deluigi CC, et al. Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy. J Am Coll Cardiol. 2008;51(10):1022–30.

    Article  PubMed  Google Scholar 

  90. Monserrat L, Elliott PM, Gimeno JR, et al. Non-sustained ventricular tachycardia in hypertrophic cardiomyopathy: an independent marker of sudden death risk in young patients. J Am Coll Cardiol. 2003;42(5):873–9.

    Article  PubMed  Google Scholar 

  91. Adabag AS, Casey SA, Kuskowski MA, et al. Spectrum and prognostic significance of arrhythmias on ambulatory Holter electrocardiogram in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2005;45(5):697–704.

    Article  PubMed  Google Scholar 

  92. Peters S, Trummel M. Diagnosis of arrhythmogenic right ventricular dysplasia-cardiomyopathy: value of standard ECG revisited. Ann Noninvasive Electrocardiol. 2003;8(3):238–45.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Richardson P, McKenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of Cardiomyopathies. Circulation. 1996;93(5):841–2.

    Article  CAS  PubMed  Google Scholar 

  94. Napoli D, Taccardi AA, Barsotti A. Long term cardioprotective action of trimetazidine and potential effect on the inflammatory process in patients with ischaemic dilated cardiomyopathy. Heart. 2005;9(2):161–5.

    Article  CAS  Google Scholar 

  95. Kadish A, Dyer A, Daubert JP, et al. Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N Engl J Med. 2004;350(21):2151–8.

    Article  CAS  PubMed  Google Scholar 

  96. Strickberger SA, Conti J, Daoud EG, et al. Patient selection for cardiac resynchronization therapy: from the Council on Clinical Cardiology Subcommittee on Electrocardiography and Arrhythmias and the Quality of Care and Outcomes Research Interdisciplinary Working Group, in collaboration with the Heart Rhythm Society. Circulation. 2005;111(16):2146–50.

    Article  PubMed  Google Scholar 

  97. Kimmelstiel C, Krishnamurthy B, Weintraub A, et al. Alcohol septal ablation and hypertrophic cardiomyopathy. Chin J Cardiol. 2009;37:1074–7.

    Google Scholar 

  98. Kottkamp H, Hindricks G. Catheter ablation of ventricular tachycardic in ARVC: is curative treatment at the horizon? J Cardiovasc Electrophysiol. 2006;17(5):477–9.

    Article  PubMed  Google Scholar 

  99. Fenton MJ, Chubb H, McMahon AM, et al. Heart and heart-lung transplantation for idiopathic restrictive cardiomyopathy in children. Heart. 2006;92:85–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Khush KK. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-fifth Adult Heart Transplantation Report—2018; Focus Theme: Multiorgan Transplantation.

    Google Scholar 

  101. de Souza-Neto JD, de Oliveira IM, Lima-Rocha HA, et al. Hypertension and arterial stiffness in heart transplantation patients. Clinics (Sao Paulo). 2016;71(9):494–9. https://doi.org/10.6061/clinics/2016(09)02.

    Article  Google Scholar 

  102. Hošková L, Málek I, Kopkan L , et al. Pathophysiological mechanisms of calcineurin inhibitor-induced nephrotoxicity and arterial hypertension[J]. Physiological research/Academia Scientiarum Bohemoslovaca, 2016;66(2):167.

    Google Scholar 

  103. Liu qing, hu shengshou, huang jie, song yunhu, wang wei, liao zhongkai, qiu jian-li, wang yong. Risk factors of hypertension after heart transplantation and their effect on medium-term prognosis [J]. Chinese journal of hypertension. 2013;21(08):800.

    Google Scholar 

  104. Shengshou H. Complications of heart transplantation. In: Chinese medical association 2015 annual meeting of organ transplantation.

    Google Scholar 

  105. Abe T, Tsuda E, Miyazaki A, et al. Clinical characteristics and long-term outcome of acute myocarditis in children. Heart Vessel. 2013;28(5):632–8.

    Article  Google Scholar 

  106. Anderson JB, Czosek RJ, Knilans TK, et al. Postoperative heart block in children with common forms of congenital heart disease: results from the KID Database. J Cardiovasc Electrophysiol. 2012;23(12):1349–54.

    Article  PubMed  Google Scholar 

  107. Batra A, Epstein D, Silka M. The clinical course of acquired complete heart block in children with acute myocarditis. Pediatr Cardiol. 2003;24:495–7.

    Article  CAS  PubMed  Google Scholar 

  108. Brucato A, Jonson A, Friedman D, et al. Proposal for a new definition of congenital complete atrioventricular block. Lupus. 2003;12:427–35.

    Article  CAS  PubMed  Google Scholar 

  109. Autoimmune associated congenital heart block: demographics, mortality, morbidity and recurrence rates obtained from a National Neonatal Lupus Registry.

    Google Scholar 

  110. Karpawich PP, Gillette PC, Garson A, et al. Congenital complete atrioventricular block: clinical and electrophysiologic predictors of need for pacemaker insertion. Am J Cardiol. 1981;48(6):1098–102.

    Article  CAS  PubMed  Google Scholar 

  111. Pordon CM, Moodie DS. Adults with congenital complete heart block: 25-year follow-up. Cleve Clin J Med. 1992;59(6):587–90.

    Article  CAS  PubMed  Google Scholar 

  112. Sholler GF, Walsh EP. Congenital complete heart block in patients without anatomic cardiac defects. Am Heart J. 1989;118(6):1193–8.

    Article  CAS  PubMed  Google Scholar 

  113. Abaci A, Unlu S, Alsancak Y, et al. Short and long term complications of device closure of atrial septal defect and patent foramen ovale: meta-analysis of 28,142 patients from 203 studies. Catheter Cardiovasc Interv. 2013;82(7):1123–38.

    Article  PubMed  Google Scholar 

  114. Osman W. Complete heart block clinical manifestations and modes of cardiac pacing; 2005.

    Google Scholar 

  115. Pinsky WW, Gillette PC, Garson A, et al. Diagnosis, management, and long-term results of patients with congenital complete atrioventricular block. Pediatrics. 1982;69(6):728–33.

    CAS  PubMed  Google Scholar 

  116. Cosby RS, Edwin AC, Francis YKL, et al. 13. Electrocardiographic and clinical features in the prognosis of complete heart block. Am J Cardiol. 1965;15(1):128.

    Article  Google Scholar 

  117. Askanas A, Kraska T, Sadowski Z, et al. [Treatment of complete atrioventricular block]. Wiadomosci Lekarskie. 1967;20(5):467.

    Google Scholar 

  118. Batmaz G, Villain E, Bonnet D, et al. [Therapy and prognosis of infectious complete atrioventricular block in children]. Archives Des Maladies Du Coeur Et Des Vaisseaux 2000;93(5):553.

    Google Scholar 

  119. Kaida T, Inomata T, Minami Y, et al. Importance of early diagnosis of cardiac sarcoidosis in patients with complete atrioventricular block. Int Heart J. 2018;59(4):772–8.

    Article  PubMed  Google Scholar 

  120. Sethwala A, Samuel R. Malignant hypertension from complete heart block. Heart Lung Circ. 2018;27:S67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duiyimuhan, G. et al. (2020). Cardiovascular Diseases and Hypertension. In: Li, N. (eds) Secondary Hypertension. Springer, Singapore. https://doi.org/10.1007/978-981-15-0591-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0591-1_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0590-4

  • Online ISBN: 978-981-15-0591-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics