Skip to main content

Z/Y/T/S-Matrices’ Modelling of Symmetric SIMO Structure Based on Elementary Distributed RLC-Cell

  • Chapter
  • First Online:
  • 319 Accesses

Abstract

Over the five last decades, the semiconductor technology advance is based on the growth of analogical and digital circuit integration density and also the increase of operating data speed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.-E. Hwang, S.-O. Jung, K. Roy, Slope interconnect effort: gate-interconnect interdependent delay modeling for early CMOS circuit simulation. IEEE Trans. CAS I 56(7), 1428–1441 (2009)

    MathSciNet  Google Scholar 

  2. M. Ghoneima, Y. Ismail, M.M. Khellah, J. Tschanz, V. De, Serial-link bus: a low-power on-chip bus architecture. IEEE Trans. CAS I 56(9), 2020–2032 (2009)

    MathSciNet  Google Scholar 

  3. B. Yun, S.S. Wong, Optimization of driver preemphasis for on-chip interconnects. IEEE Trans. CAS I 56(9), 2033–2041 (2009)

    MathSciNet  Google Scholar 

  4. J. Cong, L. He, C.K. Koh, P.H. Madden, Performance optimization of VLSI interconnect layout. Integr. VLSI J. 21(1–2), 1–94 (1996)

    Article  Google Scholar 

  5. L. Hungwen, S. Chauchin, L.J. Chien-Nan, A tree-topology multiplexer for multiphase clock system. IEEE Trans. CAS I 56(1), 124–131 (2009)

    MathSciNet  Google Scholar 

  6. N. Rakuljic, I. Galton, Tree-structured DEM DACs with arbitrary numbers of levels. IEEE Trans. CAS I 52(2), 313–322 (2010)

    MathSciNet  Google Scholar 

  7. G.F. Bo, P. Ampadu, On hamming product codes with type-II hybrid ARQ for on-chip interconnects. IEEE Trans. CAS I 56(9), 2042–2054 (2009)

    MathSciNet  Google Scholar 

  8. P.P. Sotiriadis, A.P. Chandrakasan, A bus energy model for deep submicron technology. IEEE Trans. VLSI Syst. 10(3), 341–350 (2002)

    Article  Google Scholar 

  9. J.D. Meindl, Interconnect opportunities for gigascale integration. IEEE Micro. 23(3), 28–35 (2003)

    Google Scholar 

  10. W.H. Ryu, M. Wang, A co-design methodology of signal integrity and power integrity, in DesignCon, pp. 1–23 (2006)

    Google Scholar 

  11. D. Gizopoulos, N. Ou, T. Farahmand, A. Kuo, S. Tabatabaei, A. Ivanov, Jitter models for the design and test of Gbps-speed serial interconnects. IEEE Des. Test Comput. 302–313 (2002)

    Google Scholar 

  12. Y.I. Ismail, E.G. Friedman, Effects of inductance on the propagation, delay and repeater insertion in VLSI circuits. IEEE Trans. VLSI Syst. 8(2), 195–206 (2000)

    Article  Google Scholar 

  13. V.V. Deodhar, J.A. Davis, Optimal voltage scaling, repeater insertion, and wire sizing for wave-pipelined global interconnects. IEEE Trans. CAS I 55(4), 1023–1030 (2008)

    MathSciNet  Google Scholar 

  14. D. Velenis, R. Sundaresha, E.G. Friedman, Buffer sizing for delay uncertainty induced by process variations, in Proceedings of IEEE International Conference on Electronics, CAS, pp. 415–418, Dec 2004

    Google Scholar 

  15. B. Ravelo, A. Perennec, M. Le Roy, Equalization of interconnect propagation delay with negative group delay active circuits, in Proceedings of 11th IEEE Workshop on SPI, Genova, Italy, pp. 15–18, May 2007

    Google Scholar 

  16. B. Ravelo, A. Perennec, M. Le Roy, Application of negative group delay active circuits to reduce the 50% propagation delay of RC-line model, in Proceedings of 12th IEEE Workshop on SPI, Avignon, France, May 2008

    Google Scholar 

  17. B. Ravelo, A. Perennec, M. Le Roy, Experimental validation of the RC-interconnect effect equalization with negative group delay active circuit in planar hybrid technology, in 13th IEEE Workshop on SPI, Strasbourg, France, May 2009

    Google Scholar 

  18. B. Ravelo, A. Perennec, M. Le Roy, New technique of inter-chip interconnect effects equalization with negative group delay active circuits, in VLSI Intech, Chap. 20, ed. by Z.F. Wang (2010), pp. 409–434

    Google Scholar 

  19. International Technology Roadmap for Semiconductors Update Overview (2009). [Online]. Available: http://www.itrs.net/

  20. J.J. Wells, Faster than fiber: the future of multi-Gb/s wireless. IEEE Microwave Mag. 104–112 (2009)

    Google Scholar 

  21. R.M. Henderson, K.J. Herrick, T.M. Weller, S.V. Robertson, R.T. Kihm, L.P.B. Katehi, Three-dimensional high-frequency distribution networks—Part II: packaging and integration. IEEE Trans. MTT 48(10), 1643–1651 (2000)

    Article  Google Scholar 

  22. M. Voutilainen, M. Rouvala, P. Kotiranta, T. Rauner, Multi-gigabit serial link emissions and mobile terminal antenna interference, in 13th IEEE Workshop on SPI, Strasbourg, France, May 2009

    Google Scholar 

  23. S.Y. Kim, Modeling and screening on-chip interconnect inductance, Ph.D. thesis. Stanford University, CA, USA (2004)

    Google Scholar 

  24. W. Maichen, When digital becomes analog-interfaces in high speed test, in Proceedings of 12th IEEE Workshop on SPI, Avignon, France, May 2008

    Google Scholar 

  25. A. Deutsch, High-speed signal propagation on lossy transmission lines. IBM J. Res. Develop. 34(4), 601–615 (1990)

    Google Scholar 

  26. S.P. Sim, S. Krishnan, D.M. Petranovic, N.D. Arora, K. Lee, C.Y. Yang, A unified RLC model for high-speed on-chip interconnects. IEEE Trans. Electron Devices 50(6), 1501–1510 (2003)

    Article  Google Scholar 

  27. Agilent EEsof EDA, Overview: Electromagnetic Design System (EMDS) (2008, Sept). [Online]. Available: http://www.agilent.com/find/eesof-emds

  28. Ansoft Corporation, Simulation Software: High-performance Signal and Power Integrity. Internal Report (2006)

    Google Scholar 

  29. ANSYS, Unparalleled Advancements in Signal- and Power-Integrity, Electromagnetic Compatibility Testing (2009, June 16). [Online]. Available: http://investors.ansys.com/

  30. North East Systems Associates (NESA), RJ45 Interconnect Signal Integrity (2010 CST AG). [Online]. Available: http://www.cst.com/Content/Applications/Article/

  31. W.C. Elmore, The transient response of damped linear networks. J. Appl. Phys. 19, 55–63 (1948)

    Article  Google Scholar 

  32. P.K. Chan, M.D.F. Schlag, Bounds on signal delay in RC mesh networks. IEEE Trans. CAD 8, 581–589 (1989)

    Article  Google Scholar 

  33. M.A. Horowitz, Timing models for MOS pass networks, in 1983 Proceedings of IEEE ISCAS, pp. 198–201

    Google Scholar 

  34. L. Wyatt, Circuit Analysis, Simulation and Design (Elsevier Science, North-Holland, The Netherlands, 1978)

    Google Scholar 

  35. D. Standley, J.L. Wyatt Jr., Improved signal delay bounds for RC tree networks, in VLSI Memo, No. 86–317 (MIT, Cambridge, MAS, USA, May 1986)

    Google Scholar 

  36. N.K. Jain, V.C. Prasad, A.B. Bhattacharyyaa, Delay-time sensitivity in linear RC tree. IEEE Trans. CAS 34(4), 443–445 (1987)

    Article  Google Scholar 

  37. L. Vandenberghe, S. Boyd, A. El Gamal, Optimizing dominant time constant in RC circuits. IEEE Trans. CAD 17(2), 110–125 (1998)

    Article  Google Scholar 

  38. C.A. Marinov, A. Rubio, The energy bounds in RC circuits. IEEE Trans. CAS I 46(7), 869–871 (1999)

    Article  Google Scholar 

  39. A.C. Deng, Y.C. Shiau, Generic linear RC delay modeling for digital CMOS circuits. IEEE Trans. CAD 9(4), 367–376 (1990)

    Article  Google Scholar 

  40. R. Gupta, B. Tutuianu, L.T. Pileggi, The Elmore delay as a bound for RC trees with generalized input signals. IEEE Trans. CAD 16(1), 95–104 (1997)

    Article  Google Scholar 

  41. M. Celik, L. Pileggi, A. Odabasioglu, IC Interconnect Analysis (Kluwer Academic Publisher, Dordrecht, 2002)

    Google Scholar 

  42. A.B. Kahng, S. Muddu, An analytical delay model of RLC interconnects. IEEE Trans. CAD 16, 1507–1514 (1997)

    Article  Google Scholar 

  43. Y.I. Ismail, E.G. Friedman, J.L. Neves, Figures of merit to characterize the importance of on-chip inductance, in 1998 Proceedings of the 35th Annual ACM IEEE Design Automation Conference, San Francisco, CA (USA), pp. 560–565

    Google Scholar 

  44. Y.I. Ismail, E.G. Friedman, J.L. Neves, Equivalent Elmore delay for RLC trees. IEEE Trans. CAD 19(1), 83–97 (2000)

    Article  Google Scholar 

  45. A. Ligocka, W. Bandurski, Effect of inductance on interconnect propagation delay in VLSI circuits, in Proceedings of 8th Workshop on SPI, pp. 121–124, 9–12 May 2004

    Google Scholar 

  46. G. Chen, E.G. Friedman, Transient response of a distributed RLC interconnect based on direct pole extraction. J. Circuits Syst. Comput. 18(7), 1263–1285 (2009)

    Article  Google Scholar 

  47. V.L. Chi, Salphasic distribution of clock signals for synchronous systems. IEEE Trans. Comput. 43(5), 597–602 (1994)

    Article  Google Scholar 

  48. D. Velenis, E.G. Friedman, A clock tree topology extraction algorithm for improving the tolerance of clock distribution networks to delay uncertainty, in 2001 Proceedings ISCAS, vol. 4, pp. 422–425

    Google Scholar 

  49. Y. Awatsuji, T. Kubota, Two-dimensional H-tree parallel optical interconnect for two-dimensional image by using optical iterative processing. IEEE Photonics Technol. Lett. 13(1), 79–81 (2001)

    Article  Google Scholar 

  50. M.A. El-Moursy, E.G. Friedman, Exponentially tapered H-tree clock distribution networks. IEEE Trans. VLSI Syst. 13(8), 971–975 (2005)

    Article  Google Scholar 

  51. Y. Yutaka, A. Hideharu, K. Michihiro, J. Akiya, A. Ken’Ichiro, Fat H-tree: an interconnection network for reconfigurable processor array. J. IEICE Trans. Inf. Syst. J 89-D(9), 1923–1934 (2006)

    Google Scholar 

  52. J. Rosenfeld, E.G. Friedman, Design methodology for global resonant H-tree clock distribution networks. IEEE Trans. VLSI Syst. 15(2), 135–148 (2007)

    Article  Google Scholar 

  53. I. Chanodia, D. Velenis, Parameter variations and crosstalk noise effects on high performance H-tree clock distribution networks. Analog. Integr. Circ. Sig. Process. 56, 13–21 (2008)

    Google Scholar 

  54. C.-W.A. Tsao, C.-K. Koh, A clock tree router for general skew constraints. J. ACM TODAES 7(3), 359–379 (2002)

    Article  Google Scholar 

  55. Y.I. Ismail, E.G. Friedman, Fast and accurate simulation of tree structured interconnect, in Proceedings of 43rd IEEE Midwest Symposium, CAS, Lansing MI, pp. 1130–1134, Aug 2000

    Google Scholar 

  56. W.-K. Loo, K.-S. Tan, Y.-K. Teh, A study and design of CMOS H-tree clock distribution network in system-on-chip, in Proceedings of 8th IEEE International Conference on ASIC, Changsha, Hunan, China, pp. 411–414, Oct 2009

    Google Scholar 

  57. D. Pozar, Microwave Engineering (Wiley, Hoboken, 1998)

    Google Scholar 

  58. T. Eudes, B. Ravelo, A. Louis, Transient response characterization of the high-speed interconnection RLCG-model for the signal integrity analysis. Prog. Electromagnet. Res. 112, 183–197 (2011)

    Article  Google Scholar 

  59. Jedec, DDR3 SDRAM Unbuffered DIMM Design Specification. Jedec Standard No. 21C Rev 1.03, Jan 2011

    Google Scholar 

  60. T. Eudes, B. Ravelo, Analysis of multi-gigabits signal integrity through clock H-tree. Int. J. Circ. Theor. Appl. 41(5), 535–549 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaise Ravelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eudes, T., Ravelo, B. (2020). Z/Y/T/S-Matrices’ Modelling of Symmetric SIMO Structure Based on Elementary Distributed RLC-Cell. In: Ravelo, B. (eds) Analytical Methodology of Tree Microstrip Interconnects Modelling For Signal Distribution. Springer, Singapore. https://doi.org/10.1007/978-981-15-0552-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0552-2_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0551-5

  • Online ISBN: 978-981-15-0552-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics