Skip to main content

Analytical Modeling Methodology of Single-Input Multiple-Output (SIMO) Symmetric Tree Interconnects by Using Lumped Element L-Cell

  • Chapter
  • First Online:
  • 326 Accesses

Abstract

Since the invention of the ICs by Jack S. Kilby from Texas Instruments [1], the mankind way of life has been increasingly conditioned by the evolution of electronic systems toward the use of personal computers and multifunction mobile gadgets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.S. Kilby, Invention of the integrated circuits. IEEE Trans. Electron Devices 23, 648 (1976)

    Article  Google Scholar 

  2. H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, R.R. Taylor, PipeRench: a virtualized programmable datapath in 0.18 micron technology, in Proceedings of the IEEE Custom Integrated Circuits Conference (CICC), pp. 63–66, Oct 2002

    Google Scholar 

  3. K. Anjo, Y. Yamada, M. Koibuchi, A. Jouraku, H. Amano, Black-bus: a new data-transfer technique using local address on networks-on-chips, in Proceedings of IEEE International conference on Parallel and Distributed Processing Systems, Apr 2004

    Google Scholar 

  4. E. Capsi, M. Chu, R. Huang, J. Yeh, J. Wawrzyne, A. DeHon, Stream computations organized for reconfigurable execution (SCORE), in Proceedings of the Field-Programmable Logic and Applications, pp. 605–615, Sept 2000

    Google Scholar 

  5. http://www.itrs.net/

  6. M. Ghoneima, Y. Ismail, M.M. Khellah, J. Tschanz, V. De, Serial-link bus: a low-power on-chip bus architecture. IEEE Trans. CAS I 56(9), 2020–2032 (2009)

    MathSciNet  Google Scholar 

  7. H. Veenstra, J.R. Long, in Circuit and Interconnect Design for RF and High Bit-Rate Applications. Analog and Signal Processing (Springer, Berlin, 2008)

    Google Scholar 

  8. P. Master, The age of adaptive computing is here, in Proceedings of the Field-Programmable Logic and Applications, pp. 1–3, Sept 2002

    Google Scholar 

  9. T. Granberg, in Handbook of Digital Techniques for High Speed Design. Prentice Hall Modern Semiconductor Design Series (Prentice Hall, USA, 2004)

    Google Scholar 

  10. B. Bottom, Assembly and Packaging White Paper on System Level Integration. ITRS white papers (2009). Available [Online]: http://www.itrs.net/papers.html

  11. J.F. Buckwalter, Predicting microwave digital signal integrity. IEEE Trans. Adv. Packag. 32(2), 280–289 (2009)

    Article  Google Scholar 

  12. L.P. Carloni, A.B. Kahng, S.V. Muddu, A. Pinto, K. Samadi, P. Sharma, Accurate predictive interconnect modeling for system-level design. IEEE Trans. VLSI 18(4), 679–684 (2010)

    Article  Google Scholar 

  13. G.H. Zhang, M.Y. Xia, X.M. Jiang, Transient analysis of wire structures using time domain integral equation method with exact matrix elements. Prog. Electromagnet. Res. PIER 92, 281–298 (2009)

    Article  Google Scholar 

  14. M. Celik, L. Pileggi, A. Odabasioglu, IC Interconnect Analysis (Kluwer Academic Publisher, Dordrecht, Germany, 2002)

    Google Scholar 

  15. A. Deutsch, G.V. Kopcsay, P. Restle, G. Katopis, W.D. Becker, H. Smith, P.W. Coteus, C.W. Surovic, B.J. Rubin, R.P. Dunne, T. Gallo, K.A. Jenkins, L.M. Terman, R.H. Dennard, G.A. Sai-Halasz, D.R. Knebel, When are transmission-line effects important for on-chip interconnections? IEEE Trans. MTT 45, 1836–1846 (1997)

    Article  Google Scholar 

  16. S. Bendhia, M. Ramdani, E. Sicard, in Electromagnetic Compatibility of Integrated Circuits (Springer, Berlin, 2005)

    Google Scholar 

  17. I. Chanodia, D. Velenis, Parameter variations and crosstalk noise effects on high performance H-Tree clock distribution networks. Analog Integr. Circ. Sig. Process. 56, 13–21 (2008)

    Article  Google Scholar 

  18. A. Deutsch, R.S. Krabbenhoft, K.L. Melde, C.W. Surovic, G.A. Katopis, G.V. Kopcsay, Z. Zhou, Z. Chen, Y.H. Kwark, T.-M. Winkel, X. Gun, T.E. Standaert, Application of the short-pulse propagation technique for broadband characterization of PCB and other interconnect technologies. IEEE Trans. EMC 52, 266–287 (2010)

    Article  Google Scholar 

  19. S. Hasan, A.-K. Palit, W. Anheier, Equivalent victim model of the coupled interconnects for simulating crosstalk induced glitches and delays, in Proceedings of 13th IEEE Workshop on SPI, Strasbourg, France, May 2009

    Google Scholar 

  20. M.-E. Hwang, S.-O. Jung, K. Roy, Slope interconnect effort: gate-interconnect interdependent delay modeling for early CMOS circuit simulation. IEEE Trans. CAS I 56(7), 1428–1441 (2009)

    MathSciNet  Google Scholar 

  21. B. Yun, S.S. Wong, Optimization of driver preemphasis for on-chip interconnects. IEEE Trans. CAS I 56(9), 2033–2041 (2009)

    MathSciNet  Google Scholar 

  22. B. Ravelo, Delay modelling of high-speed distributed interconnect for the signal integrity prediction. Eur. Phys. J. Appl. Phys. (EPJAP) 57(31002), 1–8 (2012)

    Google Scholar 

  23. B. Ravelo, L. Rajaoarisoa, Numerical modeling of high-speed microelectronic interconnects for the signal integrity analysis. To be published in Int. J. Emerg. Sci. (IJES) 2(1) (2012)

    Google Scholar 

  24. J. Cong, L. He, C.K. Koh, P.H. Madden, Performance optimization of VLSI interconnect layout. Integr. VLSI J. 21(1–2), 1–94 (1996)

    Article  Google Scholar 

  25. H. Matsutani, M. Koibuchi, H. Amano, Performance, cost, and energy evaluation of fat H-tree: a cost-efficient tree-based on-chip network, in Proceedings of IEEE International Parallel and Distributed Processing Symposium, 26–30 Mar 2007

    Google Scholar 

  26. T.T. Ye, G. De Micheli, Physical planning for on-chip multiprocessor networks and switch fabrics, in Proceedings of the Application-Specific Systems, Architectures and Processors (ASAP), pp. 97–107, 24–26 June 2003

    Google Scholar 

  27. Circuits Multi-Projects, Multi-Project Circuits, http://cmp.imag.fr

  28. C. Gomez, F. Gilabert, M.E. Gomez, P. Lopez, J. Duato, Beyond fat–tree: unidirectional load–balanced multistage interconnection network. Comput. Archit. Lett. 7(2), 49–52 (2008)

    Article  Google Scholar 

  29. X.C. Li, J.F. Mao, M. Tang, High-speed clock tree simulation method based on moment matching, in 2005 Proceedings PIERS, Hangzhou (China), vol. 1, no. 2, pp. 142–146

    Google Scholar 

  30. L. Hungwen, S. Chauchin, L.J. Chien-Nan, A tree-topology multiplexer for multiphase clock system. IEEE Trans. CAS I 56(1), 124–131 (2009)

    MathSciNet  Google Scholar 

  31. N. Rakuljic, I. Galton, Tree-structured DEM DACs with arbitrary numbers of levels. IEEE Trans. CAS I 52(2), 313–322 (2010)

    MathSciNet  Google Scholar 

  32. G.F. Bo, P. Ampadu, On hamming product codes with type-II hybrid ARQ for on-chip interconnects. IEEE Trans. CAS I 56(9), 2042–2054 (2009)

    MathSciNet  Google Scholar 

  33. M. Voutilainen, M. Rouvala, P. Kotiranta, T. Rauner, Multi-gigabit serial link emissions and mobile terminal antenna interference, in 13th IEEE Workshop on SPI, Strasbourg, France, May 2009

    Google Scholar 

  34. B. Ravelo, Neutralization of LC- and RC-disturbances with left-handed and NGD effects, in Proceedings of the 3rd International Conference on Metamaterials, Photonic Crystals and Plasmonics (META’12), Paris, France, pp. 1–4, 19–22 Apr 2012

    Google Scholar 

  35. T. Eudes, B. Ravelo, Cancellation of delays in the high-rate interconnects with UWB NGD active cells. Appl. Phys. Res. 3(2), 81–88 (2011)

    Article  Google Scholar 

  36. B. Ravelo, Y. Liu, Microwave/digital signal correction with integrable NGD circuits, in Proceedings of International Microwave Symposium (IMS) IEEE 2012, Montreal, Canada, pp. 1–3, 17–22 June 2012

    Google Scholar 

  37. W.C. Elmore, The transient response of damped linear networks. J. Appl. Phys. 19, 55–63 (1948)

    Article  Google Scholar 

  38. F.R. Awwad, M. Nekili, V. Ramachandran, M. Sawan, On modeling of parallel repeater-insertion methodologies for SoC interconnects. IEEE Trans. CAS I 55(1), 322–335 (2008)

    MathSciNet  Google Scholar 

  39. A. Ligocka, W. Bandurski, Effect of inductance on interconnect propagation delay in VLSI circuits, in Proceedings of 8th Workshop on SPI, pp. 121–124, 9–12 May 2004

    Google Scholar 

  40. W. Maichen, When digital becomes analog-interfaces in high speed test, in 12th IEEE Workshop on SPI, Avignon, France, May 2008

    Google Scholar 

  41. P.K. Chan, M.D.F. Schlag, Bounds on signal delay in RC mesh networks. IEEE Trans. CAD 8, 581–589 (1989)

    Article  Google Scholar 

  42. M.A. Horowitz, Timing models for MOS pass networks, in 1983 Proceedings of IEEE ISCAS, pp. 198–201

    Google Scholar 

  43. D. Standley, J.L. Wyatt Jr., Improved signal delay bounds for RC tree networks, in VLSI Memo, No. 86–317 (MIT, Cambridge, MAS USA, 1986)

    Google Scholar 

  44. N.K. Jain, V.C. Prasad, A.B. Bhattacharyyaa, Delay-time sensitivity in linear RC tree. IEEE Trans. CAS 34(4), 443–445 (1987)

    Article  Google Scholar 

  45. L. Vandenberghe, S. Boyd, A. El Gamal, Optimizing dominant time constant in RC circuits. IEEE Trans. CAD 17(2), 110–125 (1998)

    Article  Google Scholar 

  46. C.A. Marinov, A. Rubio, The energy bounds in RC circuits. IEEE Trans. CAS I 46(7), 869–871 (1999)

    Article  Google Scholar 

  47. A.C. Deng, Y.C. Shiau, Generic linear RC delay modeling for digital CMOS circuits. IEEE Trans. CAD 9(4), 367–376 (1990)

    Article  Google Scholar 

  48. R. Gupta, B. Tutuianu, L.T. Pileggi, The Elmore delay as a bound for RC trees with generalized input signals. IEEE Trans. CAD 16(1), 95–104 (1997)

    Article  Google Scholar 

  49. T. Eudes, B. Ravelo, A. Louis, Transient response characterization of the high-speed interconnection RLCG-model for the signal integrity analysis. Prog. Electromagnet. J. (PIER) 112, 183–197 (2011)

    Article  Google Scholar 

  50. T. Eudes, B. Ravelo, A. Louis, Experimental validations of a simple PCB interconnect model for high-rate signal integrity. IEEE Trans. EMC 54(2), 397–404 (2012)

    Google Scholar 

  51. B. Ravelo, T. Eudes, Fast estimation of RL-loaded microelectronic interconnections delay for the signal integrity prediction. Int. J. Numer. Model 25(4), 338–346 (2012)

    Article  Google Scholar 

  52. P. Restle, C. Carter, J. Eckhardt, B. Krauter, B. McCredie, K. Jenkins, A. Weger, A. Mule, The clock distribution of the Power4 microprocessor, in Digest of Technical Papers IEEE International Solid-State Circuits Conference (ISSCC 2002), vol. 1, pp. 144–145, 3–7 Feb 2002

    Google Scholar 

  53. Y.I. Ismail, E.G. Friedman, J.L. Neves, Equivalent Elmore delay for RLC trees. IEEE Trans. CAD 19(1), 83–97 (2000)

    Article  Google Scholar 

  54. B. Ravelo, Behavioral model of symmetrical multi-level T-tree interconnects. Prog. Electromagnet. Res. (PIER) B 41, 23–50 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaise Ravelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ravelo, B. (2020). Analytical Modeling Methodology of Single-Input Multiple-Output (SIMO) Symmetric Tree Interconnects by Using Lumped Element L-Cell. In: Ravelo, B. (eds) Analytical Methodology of Tree Microstrip Interconnects Modelling For Signal Distribution. Springer, Singapore. https://doi.org/10.1007/978-981-15-0552-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0552-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0551-5

  • Online ISBN: 978-981-15-0552-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics