Skip to main content
  • 361 Accesses

Abstract

With the tremendous trend on the electronic circuit design shirking size, the electromagnetic compatibility/interference (EMC/EMI), the signal integrity and the temperature influence become critical effects (Banerjee et al. in Proceedings of 36th and 38th ACM/IEEE-CAS/EDAC design automation conference, 1999 [1]; Cheng et al. in Electrothermal analysis of VLSI systems, 2000 [2]; Schafft in IEEE Trans Electron Device Ed-34(3):664–672, 1987 [3]; Bilotti et al. in IEEE Trans Electron Device Ed-21(3):217–226, 1974 [4]; Ajami et al. in Proceedings of the IEEE conference on custom integrated circuits, pp 233–236, 2001 [5]) which must be integrated to the design and fabrication phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Banerjee, A. Mehrotra, A. Sangiovanni-Vincentelli, H. Chenming, On thermal effects in deep sub-micron VLSI interconnects, in Proceedings of 36th and 38th ACM/IEEE-CAS/EDAC Design Automation Conference, New Orleans, LA, USA, pp. 885–891, 21–25 June 1999

    Google Scholar 

  2. Y. Cheng, C. Tsai, C. Teng, S. Kang, Electrothermal Analysis of VLSI Systems (Kluwer Academic Publishers, Boston/Dordrecht/London, 2000)

    Google Scholar 

  3. H.A. Schafft, Thermal analysis of electromigration test structures. IEEE Trans. Electron Device Ed-34(3), 664–672 (1987)

    Article  Google Scholar 

  4. A.A. Bilotti, Static temperature distribution in IC chips with isothermal heat sources. IEEE Trans. Electron Device Ed-21(3), 217–226 (1974)

    Article  Google Scholar 

  5. A.H. Ajami, M. Pedram, K. Banerjee, Effects of non-uniform substrate temperature on the clock signal integrity in high performance designs, in Proceedings of the IEEE Conference on Custom Integrated Circuits, San Diego, CA, USA, pp. 233–236, 6–9 May 2001

    Google Scholar 

  6. J.R. Miller, Y. Li, K. Hinckley, G. Blando, B. Guenin, I. Novak, A. Dengi, A. Rebelo, S. McMorrow, Temperature and moisture dependence of PCB and package traces and the impact on signal performance, in Proceedings of DesignCon 2012, Santa Clara, CA, USA, pp. 1–27, 30 Jan–2 Feb 2012

    Google Scholar 

  7. J. Zhang, T.Y. Hsiang, Extraction of subterahertz transmission-line parameters of coplanar waveguides, in Progress in Electromagnetics Research Symposium (PIERS) Online, vol. 3, no. 7, Beijing, China, pp. 1102–110, 26–30 Mar 2007

    Article  Google Scholar 

  8. A.H. Ajami, K. Banerjee, M. Pedram, L.P.P.P. van Ginneken, Analysis of non-uniform temperature-dependent interconnect performance in high-performance ICs, in Proceedings of 38th ACM/IEEE-CAS/EDAC Design Automation Conference (DAC’01), Las Vegas, NV, USA, pp. 567–572, 18–22 June 2001

    Google Scholar 

  9. B. Ravelo, A. Perennec, M. Le Roy, Y. Boucher, Active microwave circuit with negative group delay. IEEE Microw. Wirel. Compon. Lett. 17(12), 861–863 (2007)

    Article  Google Scholar 

  10. L.F. Chen, C.K. Ong, C.P. Neo, V.V. Varadan, V.K. Varadan, Microwave Electronics: Measurement and Materials Characterization (Wiley, NJ, USA, 2005)

    Google Scholar 

  11. R.K. Challa, D. Kajfez, J.R. Gladden, A.Z. Elsherbeni, V. Demir, Permittivity measurement with a non-standard waveguide by using TRL calibration and fractional linear data fitting. Prog. Electromagn. Res. (PIER) B 2, 1–13 (2008)

    Article  Google Scholar 

  12. J. Hinojosa, S-Parameter broadband measurements on-coplanar and fast extraction of the substrate intrinsic properties. IEEE Microw. Wirel. Compon. Lett. 11(2), 80–82 (2001)

    Article  Google Scholar 

  13. A. Kumar, G. Singh, Measurement of dielectric constant and loss factor of the dielectric material at microwave frequencies. Prog. Electromagn. Res. (PIER) 69, 47–5469 (2007)

    Article  Google Scholar 

  14. X.-C. Zhu, W. Hong, K. Wu, H.-J. Tang, Z.-C. Hao, H.-X. Zhou, Characterization of substrate material using complementary split ring resonators at terahertz frequencies, in Proceedings of the IEEE International Wireless Symposium (IWS) 2013, Beijing, China, pp. 1–4, 14–18 Apr 2013

    Google Scholar 

  15. J. Krupka, J. Breeze, A. Centeno, N. Alford, T. Claussen, L. Jensen, Measurements of permittivity, dielectric loss tangent, and resistivity of float-zone silicon at microwave frequencies. IEEE Trans. Microw. Theory Tech. 54(11), 3995–4001 (2006)

    Article  Google Scholar 

  16. T. Eudes, B. Ravelo, A. Louis, Experimental validations of a simple PCB interconnect model for high-rate signal integrity. IEEE Trans. Electromagn. Compat. 54(2), 397–404 (2012)

    Article  Google Scholar 

  17. I.J. Bahl, D.K. Trivedi, A designer’s guide to microstrip line. Microwaves 174–182 (1977)

    Google Scholar 

  18. C.D. Raj, G.S. Rao, P.V.Y. Jayasree, B. Srinu, P. Lakshman, Estimation of reflectivity and shielding effectiveness of three layered laminate electromagnetic shield at X-band. Prog. Electromagn. Res. (PIER) B 20, 205–223 (2010)

    Article  Google Scholar 

  19. C. Morari, I. Balan, J. Pintea, E. Chitanu, I. Iordache, Electrical conductivity and electromagnetic shielding effectiveness of silicone rubber filled with ferrite and graphite powders. Prog. Electromagn. Res. (PIER) M 21, 93–104 (2011)

    Article  Google Scholar 

  20. K. Lakshmi, H. John, K.T. Mathew, R. Joseph, K.E. George, Microwave absorption, reflection and EMI shielding of PU/PANI composite. J. Acta Mater. 57, 371–375 (2009)

    Article  Google Scholar 

  21. M.Y. Koledintseva, J. Drewniak, R. DuBroff, Modelling of shielding composite materials and structures for microwave frequencies. Prog. Electromagn. Res. (PIER) B 15, 197–215 (2009)

    Article  Google Scholar 

  22. B. Ravelo, A. Thakur, A. Saini, P. Thakur, Microstrip dielectric substrate material characterization with temperature effect. ACES J. 30(12), 1322–1328 (2015)

    Google Scholar 

  23. B. Ravelo, Nonlinear loaded microstrip interconnect analysis with temperature effect, in Proceedings of the IEEE International Symposium on Electromagnetic Compatibility & EMC Europe, 2015, Dresden, Germany, pp. 1294–1299, 16–22 Aug 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Thakur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ravelo, B., Thakur, A., Saini, A., Thakur, P. (2020). Temperature Effect Analysis on Microstrip Structure. In: Ravelo, B. (eds) Analytical Methodology of Tree Microstrip Interconnects Modelling For Signal Distribution. Springer, Singapore. https://doi.org/10.1007/978-981-15-0552-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0552-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0551-5

  • Online ISBN: 978-981-15-0552-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics