Skip to main content

Pediatric T-Cell Acute Lymphobastic Leukemia

  • Chapter
  • First Online:
Pediatric Acute Lymphoblastic Leukemia
  • 1041 Accesses

Abstract

T-cell acute lymphoblastic leukemia (T-ALL), which accounts for 7–15% of pediatric ALL, has a distinct biology from B-cell precursor ALL (BCP-ALL). Despite improvements achieved with treatment-intensification strategies, compared with patients with BCP-ALL, the outcomes of patients with T-ALL are inferior. Studies have identified the genetic alterations underpinning T-ALL, defining subgroups with oncogenic transcription factor dysregulation and mutations or deletions leading to aberrant signaling pathway activation. Early T-cell precursor ALL is a recently defined subtype with unique immunophenotypic and genetic features. However, regarding prognostic significance, minimal residual disease (MRD), rather than genetic subgroups, is the most reliable indicator of T-ALL. Recent clinical trials have been designed to incorporate several key interventions—such as those with respect to dexamethasone use in induction, intensive l-asparaginase, high-dose methotrexate, and nelarabine—into MRD-directed treatments. Several studies omit cranial radiotherapy even for patients with central nervous system involvement at diagnosis, thus avoiding long-term adverse events. Progress in knowledge of tumor biology will lead to the development and use of new target therapies directed at genetic alterations, such as ABL1 fusions and aberrant activation of Notch1 or JAK-STAT pathways, via new approaches potentially improving the outcomes of pediatric T-ALL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hunger SP, Mullighan CG. Acute lymphoblastic Leukemia in children. New Eng J Med. 2015;373:1541–52.

    Article  CAS  PubMed  Google Scholar 

  2. Teachey DT, Pui C. Comparative features and outcomes between paediatric T-cell and B-cell acute lymphoblastic leukaemia. Lancet Oncol. 2019;20:e142–54.

    Article  PubMed  Google Scholar 

  3. Toft N, Birgens H, Abrahamsson J, et al. Results of NOPHO ALL2008 treatment for patients aged 1-45 years with acute lymphoblastic leukemia. Leukemia. 2018;32:606–15.

    Article  CAS  PubMed  Google Scholar 

  4. Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10:147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Conter V, Valsecchi MG, Buldini B, et al. Early T-cell precursor acute lymphoblastic leukaemia in children treated in AIEOP centres with AIEOP-BFM protocols: a retrospective analysis. Lancet Haematol. 2016;3:e80–6.

    Article  PubMed  Google Scholar 

  6. Willemse MJ, Seriu T, Hettinger K, et al. Detection of minimal residual disease identifies differences in treatment response between T-ALL and precursor B-ALL. Blood. 2002;99:4386–93.

    Article  CAS  PubMed  Google Scholar 

  7. Karrman K, Johansson B. Pediatric T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2017;56:89–116.

    Article  CAS  PubMed  Google Scholar 

  8. Girardi T, Vicente C, Cools J, et al. The genetics and molecular biology of T-ALL. Blood. 2017;129:1113–23.

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Easton J, Shao Y, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49:1211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bernard OA, Busson-LeConiat M, Ballerini P, et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia. 2001;15:1495–504.

    Article  CAS  PubMed  Google Scholar 

  11. Cavé H, Suciu S, Preudhomme C, et al. Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL-TAL fusion in childhood T-cell malignancies: results of EORTC studies 58881 and 58951. Blood. 2004;103:442–50.

    Article  PubMed  CAS  Google Scholar 

  12. Asnafi V, Radford-Weiss I, Dastugue N, et al. CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRγδ lineage. Blood. 2003;102:1000–6.

    Article  CAS  PubMed  Google Scholar 

  13. Hagemeijer A, Graux C. ABL1 rearrangements in T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2010;49:299–308.

    CAS  PubMed  Google Scholar 

  14. Karrman K, Castor A, Behrendtz M, et al. Deep sequencing and SNP array analyses of pediatric T-cell acute lymphoblastic leukemia reveal NOTCH1 mutations in minor subclones and a high incidence of uniparental isodisomies affecting CDKN2A. J Hematol Oncol. 2015;8:42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Park M, Taki T, Oda M, et al. FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non-Hodgkin lymphoma. Br J Haematol. 2009;145:198–206.

    Article  CAS  PubMed  Google Scholar 

  16. Zuurbier L, Homminga I, Calvert V, et al. NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols. Leukemia. 2010;24:2014–22.

    Article  CAS  PubMed  Google Scholar 

  17. Jenkinson S, Koo K, Mansour MR, et al. Impact of NOTCH1/FBXW7 mutations on outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on the MRC UKALL 2003 trial. Leukemia. 2013;27:41–7.

    Article  CAS  PubMed  Google Scholar 

  18. Raetz EA, Teachey DT. T-cell acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2016;2016:580–5588.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schrappe M, Valsecchi MG, Bartram CR, et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood. 2011;118:2077–84.

    Article  CAS  PubMed  Google Scholar 

  20. Winter SS, Dunsmore KP, Devidas M, et al. Improved survival for children and young adults with T-lineage acute lymphoblastic Leukemia: results from the Children’s oncology group AALL0434 methotrexate randomization. J Clin Oncol. 2018;36:2926–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pieters R, de Groot-Kruseman H, Van der Velden V, et al. Successful therapy reduction and intensification for childhood acute lymphoblastic Leukemia based on minimal residual disease monitoring: study ALL10 from the Dutch childhood oncology group. J Clin Oncol. 2016;34:2591–601.

    Article  PubMed  Google Scholar 

  22. Pui C, Campana D, Pei D, et al. Treating childhood acute lymphoblastic Leukemia without cranial irradiation. New Eng J Med. 2009;360:2730–41.

    Article  CAS  PubMed  Google Scholar 

  23. Patrick K, Wade R, Goulden N, et al. Improved outcome for children and young people with T-acute lymphoblastic leukaemia: results of the UKALL 2003 trial. Blood. 2014;124:3702. Meeting Abstract

    Article  Google Scholar 

  24. Hough R, Rowntree C, Goulden N, et al. Efficacy and toxicity of a paediatric protocol in teenagers and young adults with Philadelphia chromosome negative acute lymphoblastic leukaemia: results from UKALL 2003. Br J Haematol. 2016;172:439–51.

    Article  PubMed  CAS  Google Scholar 

  25. Domenech C, Suciu S, De Moerloose B, et al. Dexamethasone (6 mg/m2/day) and prednisolone (60 mg/m2/day) were equally effective as induction therapy for childhood acute lymphoblastic leukemia in the EORTC CLG 58951 randomized trial. Haematologica. 2014;99:1220–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Place AE, Stevenson KE, Vrooman LM, et al. Intravenous pegylated asparaginase versus intramuscular native Escherichia coli l-asparaginase in newly diagnosed childhood acute lymphoblastic leukaemia (DFCI 05-001): a randomised, open-label phase 3 trial. Lancet Oncol. 2015;16:1677–90.

    Article  CAS  PubMed  Google Scholar 

  27. Petit A, Trinquand A, Chevret S, et al. Oncogenetic mutations combined with MRD improve outcome prediction in pediatric T-cell acute lymphoblastic leukemia. Blood. 2018;131:289–300.

    Article  CAS  PubMed  Google Scholar 

  28. Takahashi H, Kajiwara R, Kato M, et al. Treatment outcome of children with acute lymphoblastic leukemia: the Tokyo Children’s cancer study group (TCCSG) study L04-16. Int J Hematol. 2018;108:98–108.

    Article  PubMed  Google Scholar 

  29. Kobayashi R, Takimoto T, Nakazawa A, et al. Inferior outcomes of stage III T lymphoblastic lymphoma relative to stage IV lymphoma and T-acute lymphoblastic leukemia: long-term comparison of outcomes in the JACLS NHL T-98 and ALL T-97 protocols. Int J Hematol. 2014;99:743–9.

    Article  CAS  PubMed  Google Scholar 

  30. Möricke A, Zimmermann M, Valsecchi MG, et al. Dexamethasone vs prednisone in induction treatment of pediatric ALL: results of the randomized trial AIEOP-BFM ALL 2000. Blood. 2016;127:2101–12.

    Article  PubMed  CAS  Google Scholar 

  31. Synold TW, Relling MV, Boyett JM, et al. Blast cell methotrexate-polyglutamate accumulation in vivo differs by lineage, ploidy, and methotrexate dose in acute lymphoblastic leukemia. J Clin Invest. 1994;94:1996–2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schrappe M, Reiter A, Zimmermann M, et al. Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Berlin-Frankfurt-Munster. Leukemia. 2000;14:2205–22.

    Article  CAS  PubMed  Google Scholar 

  33. Asselin BL, Devidas M, Wang C, et al. Effectiveness of high-dose methotrexate in T-cell lymphoblastic leukemia and advanced-stage lymphoblastic lymphoma: a randomized study by the Children's oncology group (POG 9404). Blood. 2011;118:874–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Amylon MD, Shuster J, Pullen J, et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a Pediatric oncology group study. Leukemia. 1999;13:335–42.

    Article  CAS  PubMed  Google Scholar 

  35. van der Sluis IM, Vrooman LM, Pieters R, et al. Consensus expert recommendations for identification and management of asparaginase hypersensitivity and silent inactivation. Haematologica. 2016;101:279–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Rodriguez CO, Stellrecht CM, Gandhi V. Mechanisms for T-cell selective cytotoxicity of arabinosylguanine. Blood. 2003;102:1842–8.

    Article  CAS  PubMed  Google Scholar 

  37. Berg SL, Blaney SM, Devidas M, et al. Phase II study of Nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: a report from the Children's oncology group. J Clin Oncol. 2005;23:3376–82.

    Article  CAS  PubMed  Google Scholar 

  38. Dunsmore KP, Devidas M, Linda SB, et al. Pilot study of Nelarabine in combination with intensive chemotherapy in high-risk T-cell acute lymphoblastic Leukemia: a report from the Children's oncology group. J Clin Oncol. 2012;30:2753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Winter SS, Dunsmore KP, Devidas M, et al. Safe integration of nelarabine into intensive chemotherapy in newly diagnosed T-cell acute lymphoblastic leukemia: Children's oncology group study AALL0434. Pediatr Blood Cancer. 2015;62:1176–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vora A, Andreano A, Pui C, et al. Influence of cranial radiotherapy on outcome in children with acute lymphoblastic Leukemia treated with contemporary therapy. J Clin Oncol. 2016;34:919–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clappier E, Collette S, Grardel N, et al. NOTCH1 and FBXW7 mutations have a favorable impact on early response to treatment, but not on outcome, in children with T-cell acute lymphoblastic leukemia (T-ALL) treated on EORTC trials 58881 and 58951. Leukemia. 2010;24:2023–31.

    Article  CAS  PubMed  Google Scholar 

  42. Kelly MJ, Trikalinos TA, Dahabreh IJ, et al. Cranial radiation for Pediatric T-lineage acute lymphoblastic Leukemia: a systematic review and meta-analysis. Am J Hematol. 2014;89:992–7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schrauder A, Reiter A, Gadner H, et al. Superiority of allogeneic hematopoietic stem-cell transplantation compared with chemotherapy alone in high-risk childhood T-cell acute lymphoblastic Leukemia: results from ALL-BFM 90 and 95. J Clin Oncol. 2006;24:5742–9.

    Article  PubMed  Google Scholar 

  44. Nguyen K, Devidas M, Cheng S, et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children's oncology group study. Leukemia. 2008;22:2142–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Paganin M, Zecca M, Fabbri G, et al. Minimal residual disease is an important predictive factor of outcome in children with relapsed ‘high-risk’ acute lymphoblastic leukemia. Leukemia. 2008;22:2193–200.

    Article  CAS  PubMed  Google Scholar 

  46. Ballerini P, Landman-Parker J, Cayuela JM, et al. Impact of genotype on survival of children with T-cell acute lymphoblastic leukemia treated according to the French protocol FRALLE-93: the effect of TLX3/HOX11L2 gene expression on outcome. Haematologica. 2008;93:1658–65.

    Article  PubMed  Google Scholar 

  47. van Grotel M, Meijerink JP, van Wering ER, et al. Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences. Leukemia. 2008;22:124–31.

    Article  PubMed  CAS  Google Scholar 

  48. Kox C, Zimmermann M, Stanulla M, et al. The favorable effect of activating NOTCH1 receptor mutations on long-term outcome in T-ALL patients treated on the ALL-BFM 2000 protocol can be separated from FBXW7 loss of function. Leukemia. 2010;24:2005–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Seki M, Kimura S, Isobe T, et al. Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic leukemia. Nat Genet. 2017;49:1274–81.

    Article  CAS  PubMed  Google Scholar 

  50. Inukai T, Kiyokawa N, Campana D, et al. Clinical significance of early T-cell precursor acute lymphoblastic leukaemia: results of the Tokyo Children’s cancer study group study L99-15. Br J Haematol. 2012;156:358–65.

    Article  CAS  PubMed  Google Scholar 

  51. Modvig S, Madsen HO, Siitonen SM, et al. Minimal residual disease quantification by flow cytometry provides reliable risk stratification in T-cell acute lymphoblastic leukemia. Leukemia. 2019;33(6):1324–36. https://doi.org/10.1038/s41375-018-0307-6.

    Article  CAS  PubMed  Google Scholar 

  52. Wood BL, Winter SS, Dunsmore KP, et al. T-lymphoblastic Leukemia (T-ALL) shows excellent outcome, lack of significance of the early Thymic precursor (ETP) Immunophenotype, and validation of the prognostic value of end-induction minimal residual disease (MRD) in Children’s oncology group (COG) study AALL0434. Blood. 2014;124:1. meeting abstract

    Article  Google Scholar 

  53. Pui C, Pei D, Raimondi SC, et al. Clinical impact of minimal residual disease in children with different subtypes of acute lymphoblastic leukemia treated with response-adapted therapy. Leukemia. 2017;31:333–9.

    Article  PubMed  Google Scholar 

  54. Pui C, Pei D, Coustan-Smith E, et al. Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: a prospective study. Lancet Oncol. 2015;16:465–74.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Papayannidis C, DeAngelo DJ, Stock W, et al. A phase 1 study of the novel gamma-secretase inhibitor PF-03084014 in patients with T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Blood Cancer J. 2015;5:e350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maude SL, Dolai S, Delgado-Martin C, et al. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood. 2015;125:1759–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sato, A. (2020). Pediatric T-Cell Acute Lymphobastic Leukemia. In: Kato, M. (eds) Pediatric Acute Lymphoblastic Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-15-0548-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0548-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0547-8

  • Online ISBN: 978-981-15-0548-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics